scholarly journals ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis

2012 ◽  
Vol 287 (15) ◽  
pp. 12445-12454 ◽  
Author(s):  
Armin M. Gamper ◽  
Serah Choi ◽  
Yoshihiro Matsumoto ◽  
Dibyendu Banerjee ◽  
Alan E. Tomkinson ◽  
...  

Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner.

2011 ◽  
Vol 23 (2) ◽  
pp. 806-822 ◽  
Author(s):  
Alessandra Amoroso ◽  
Lorenzo Concia ◽  
Caterina Maggio ◽  
Cécile Raynaud ◽  
Catherine Bergounioux ◽  
...  

1995 ◽  
Vol 269 (3) ◽  
pp. H943-H951 ◽  
Author(s):  
K. Reiss ◽  
W. Cheng ◽  
J. Kajstura ◽  
E. H. Sonnenblick ◽  
L. G. Meggs ◽  
...  

To determine whether the growth of cardiac fibroblasts during development is modulated by the insulin-like growth factor (IGF)-1 receptor (IGF-1R), the expression of IGF-1, IGF-2, and IGF-1R was determined in fibroblasts from fetal and postnatal hearts. The expression of proliferating cell nuclear antigen (PCNA) and DNA polymerase-alpha was also evaluated in combination with the estimation of DNA replication. In comparison with fetal hearts, at postnatal day 21, fibroblast expression of IGF-1R mRNA, IGF-2, PCNA, and DNA polymerase-alpha was reduced by 77, 70, 80, and 86%, respectively. Moreover, IGF-1R protein decreased by 48% at 21 days. Bromodeoxyuridine labeling decreased by 88 and 89% in the left and right ventricle, respectively, at this time. Two different antisense oligodeoxynucleotides to IGF-1R reduced DNA replication by 60 and 44% in fibroblasts in culture. In addition, this intervention markedly attenuated the growth response of fibroblasts to IGF-1 or serum. In conclusion, the IGF-1R system appears to play a major role in the regulation of fibroblast growth in the heart in vivo.


1999 ◽  
Vol 285 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Giovanni Maga ◽  
Zophonı́as O Jónsson ◽  
Manuel Stucki ◽  
Silvio Spadari ◽  
Ulrich Hübscher

1998 ◽  
Vol 332 (2) ◽  
pp. 557-563 ◽  
Author(s):  
Hirokazu SETO ◽  
Masami HATANAKA ◽  
Seisuke KIMURA ◽  
Masahiko OSHIGE ◽  
Yuri TSUYA ◽  
...  

A DNA polymerase from cauliflower (Brassica oleracea var. botrytis) inflorescence has been purified to near homogeneity through five successive column chromatographies, and temporally designated cauliflower polymerase 1. Cauliflower polymerase 1 is a monopolypeptide with a molecular mass of 100 kDa. The enzyme efficiently uses synthetic DNA homopolymers and moderately activated DNA and a synthetic RNA homopolymer as template-primers. The enzyme is strongly sensitive to dideoxythymidine triphosphate and N-ethylmaleimide, but it is insensitive to aphidicolin. It was stimulated with 250 mM KCl. Its mode of DNA synthesis is high-processive with or without proliferating-cell nuclear antigen. A 3´ → 5´ exonuclease activity is associated with cauliflower polymerase 1. The enzyme is clearly different from cauliflower mitochondrial polymerase and does not resemble the four different types of wheat DNA polymerase, designated wheat DNA polymerases A, B, CI and CII. In the present paper the role of the enzyme in plant DNA synthesis is discussed.


1999 ◽  
Vol 181 (21) ◽  
pp. 6591-6599 ◽  
Author(s):  
Isaac K. O. Cann ◽  
Sonoko Ishino ◽  
Ikuko Hayashi ◽  
Kayoko Komori ◽  
Hiroyuki Toh ◽  
...  

ABSTRACT Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domainEucarya. We cloned the gene encoding a PCNA homolog (PfuPCNA) from an euryarchaeote, Pyrococcus furiosus, expressed it in Escherichia coli, and characterized the biochemical properties of the gene product. The protein PfuPCNA stimulated the in vitro primer extension abilities of polymerase (Pol) I and Pol II, which are the two DNA polymerases identified in this organism to date. An immunological experiment showed that PfuPCNA interacts with both Pol I and Pol II. Pol I is a single polypeptide with a sequence similar to that of family B (α-like) DNA polymerases, while Pol II is a heterodimer. PfuPCNA interacted with DP2, the catalytic subunit of the heterodimeric complex. These results strongly support the idea that the PCNA homolog works as a sliding clamp of DNA polymerases in P. furiosus, and the basic mechanism for the processive DNA synthesis is conserved in the domainsBacteria, Eucarya, and Archaea. The stimulatory effect of PfuPCNA on the DNA synthesis was observed by using a circular DNA template without the clamp loader (replication factor C [RFC]) in both Pol I and Pol II reactions in contrast to the case of eukaryotic organisms, which are known to require the RFC to open the ring structure of PCNA prior to loading onto a circular DNA. Because RFC homologs have been found in the archaeal genomes, they may permit more efficient stimulation of DNA synthesis by archaeal DNA polymerases in the presence of PCNA. This is the first stage in elucidating the archaeal DNA replication mechanism.


1999 ◽  
Vol 19 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Jin Xu ◽  
Gilbert F. Morris

ABSTRACT The proliferating cell nuclear antigen (PCNA) is a highly conserved cellular protein that functions both in DNA replication and in DNA repair. Exposure of a rat embryo fibroblast cell line (CREF cells) to γ radiation induced simultaneous expression of PCNA with the p53 tumor suppressor protein and the cyclin-dependent kinase inhibitor p21WAF1/Cip1. PCNA mRNA levels transiently increased in serum-starved cells exposed to ionizing radiation, an observation suggesting that the radiation-associated increase in PCNA expression could be dissociated from cell cycle progression. Irradiation of CREF cells activated a transiently expressed PCNA promoter chloramphenicol acetyltransferase construct through p53 binding sequences via a mechanism blocked by a dominant negative mutant p53. Electrophoretic mobility shift assays with nuclear extracts prepared from irradiated CREF cells produced four p53-specific DNA-protein complexes with the PCNA p53 binding site. Addition of monoclonal antibody PAb421 (p53-specific) or AC238 (specific to the transcriptional coactivator p300/CREB binding protein) to the mobility shift assay distinguished different forms of p53 that changed in relative abundance with time after irradiation. These findings suggest a complex cellular response to DNA damage in which p53 transiently activates expression of PCNA for the purpose of limited DNA repair. In a population of nongrowing cells with diminished PCNA levels, this pathway may be crucial to survival following DNA damage.


Sign in / Sign up

Export Citation Format

Share Document