scholarly journals Protein-tyrosine Phosphatase 1B Antagonized Signaling by Insulin-like Growth Factor-1 Receptor and Kinase BRK/PTK6 in Ovarian Cancer Cells

2013 ◽  
Vol 288 (34) ◽  
pp. 24923-24934 ◽  
Author(s):  
Gaofeng Fan ◽  
Guang Lin ◽  
Robert Lucito ◽  
Nicholas K. Tonks
PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255452
Author(s):  
Carolina Fernández ◽  
Natalia Torrealba ◽  
Francisco Altamirano ◽  
Valeria Garrido-Moreno ◽  
César Vásquez-Trincado ◽  
...  

Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.


2013 ◽  
Vol 25 (1) ◽  
pp. 245
Author(s):  
N.-H. Kang ◽  
K.-C. Choi

Resveratrol (trans-3,4,5-trihydroxystilbene; RES) was adopted in this study as a novel phytoestrogen displaying antioxidant, antiinflammatory, and anticancer effects. In this study, we evaluated the inhibitory effect of RES on the cell growth induced by 17β-oestradiol (E2), a typical oestrogen, and bisphenol A (BPA), an endocrine-disrupting chemical (EDC) in BG-1 ovarian cancer cells expressing oestrogen receptors (ER) through down-regulating oestrogen receptor α (ERa) and insulin-like growth factor-1 receptor (IGF-1R). The EDC and oestrogen appear to promote the development of the oestrogen-dependent cancers. Thus, we need to develop therapeutic methods for EDC-dependent cancers. In in vitro experiments, we examined the cell viability and mRNA expression of ERa ± IGF-1R genes following the treatments with E2 or BPA in the presence or absence of RES or ICI 182 780, an ER antagonist, by MTT assay and RT-PCR, respectively. We also examined the protein level of ERa, phosphorylated insulin receptor substrate-1 (IRS-1), phosphorylated Akt1/2/3, p21, and cyclin D1 by Western blot analysis. Treatment with E2 or BPA remarkably increased the growth of BG-1 ovarian cancer cells, and their enhanced cell growth appeared to be mediated by ERa. In addition, the treatment of BG-1 ovarian cancer cells with E2 or BPA resulted in an increase in ERa and IGF-1R gene expressions. However, co-treatment of RES reversed E2- or BPA-induced ovarian cancer cell growth and mRNA expressions of ERa and IGF-1R. The protein levels of phosphorylated IRS-1 and Akt were upregulated by E2 or BPA, whereas these levels were downregulated by co-treatment of RES in the presence of E2 or BPA. Taken together, these results indicate that RES may effectively inhibit ovarian cancer cell growth via downregulating cross-talk between ERa and IGF-1R. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of Korea government (no. 2011-0015385).


Sign in / Sign up

Export Citation Format

Share Document