scholarly journals Ras Promotes Transforming Growth Factor-β (TGF-β)-induced Epithelial-Mesenchymal Transition via a Leukotriene B4Receptor-2-linked Cascade in Mammary Epithelial Cells

2014 ◽  
Vol 289 (32) ◽  
pp. 22151-22160 ◽  
Author(s):  
Hyunju Kim ◽  
Jung-A Choi ◽  
Jae-Hong Kim
2011 ◽  
Vol 22 (24) ◽  
pp. 4750-4764 ◽  
Author(s):  
Jennifer Haynes ◽  
Jyoti Srivastava ◽  
Nikki Madson ◽  
Torsten Wittmann ◽  
Diane L. Barber

Remodeling of actin filaments is necessary for epithelial–mesenchymal transition (EMT); however, understanding of how this is regulated in real time is limited. We used an actin filament reporter and high-resolution live-cell imaging to analyze the regulated dynamics of actin filaments during transforming growth factor-β–induced EMT of mammary epithelial cells. Progressive changes in cell morphology were accompanied by reorganization of actin filaments from thin cortical bundles in epithelial cells to thick, parallel, contractile bundles that disassembled more slowly but remained dynamic in transdifferentiated cells. We show that efficient actin filament remodeling during EMT depends on increased expression of the ezrin/radixin/moesin (ERM) protein moesin. Cells suppressed for moesin expression by short hairpin RNA had fewer, thinner, and less stable actin bundles, incomplete morphological transition, and decreased invasive capacity. These cells also had less α-smooth muscle actin and phosphorylated myosin light chain in cortical patches, decreased abundance of the adhesion receptor CD44 at membrane protrusions, and attenuated autophosphorylation of focal adhesion kinase. Our findings suggest that increased moesin expression promotes EMT by regulating adhesion and contractile elements for changes in actin filament organization. We propose that the transciptional program driving EMT controls progressive remodeling of actin filament architectures.


2001 ◽  
Vol 29 (2) ◽  
pp. 216-222 ◽  
Author(s):  
H. Kim ◽  
J. Xu ◽  
Y. Su ◽  
H. Xia ◽  
L. Li ◽  
...  

The structural similarity, but non-identity, between 17β-oestradiol and the soy phytoestrogen genistein suggests that the two compounds will have actions that may be identical in some target biological systems, but different in others. Epidermal growth factor (EGF)-stimulated proliferation of human mammary epithelial cells (that do not express the oestrogen receptor) was significantly suppressed at genistein concentrations (5–10μM) that are attainable physiologically. Others have shown previously that transforming growth factor β (TGFβ) has similar growth-inhibitory effects on human cells. Analysis of the conditioned medium of human mammary epithelial cells exposed to genistein plus EGF showed increased levels of TGFβ relative to those in the medium of cells exposed to EGF or genistein alone. Related experiments in a primate model of menopause demonstrated that ingestion of soy containing isoflavones was correlated with the suppression of neurodegeneration-relevant phosphorylation of the microtubule-associated protein tau, while intake of Premarin (a hormone replacement therapy that is commonly prescribed for women) was not correlated. The results discussed here indicate that genistein, and probably other related phytoestrogens, have pleiotropic actions, some of which may involve TGFβ activity.


Sign in / Sign up

Export Citation Format

Share Document