scholarly journals Role of Protein Phosphatase 1 in Dephosphorylation of Ebola Virus VP30 Protein and Its Targeting for the Inhibition of Viral Transcription

2014 ◽  
Vol 289 (33) ◽  
pp. 22723-22738 ◽  
Author(s):  
Philipp A. Ilinykh ◽  
Bersabeh Tigabu ◽  
Andrey Ivanov ◽  
Tatiana Ammosova ◽  
Yuri Obukhov ◽  
...  
2018 ◽  
Vol 124 ◽  
pp. 108
Author(s):  
Katherina Alsina ◽  
Mohit Hulsurkar ◽  
Chunxia Yao ◽  
Barbara Langer ◽  
David Chiang ◽  
...  

2010 ◽  
Vol 426 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Jofre Ferrer-Dalmau ◽  
Asier González ◽  
Maria Platara ◽  
Clara Navarrete ◽  
José L. Martínez ◽  
...  

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Takamatsu ◽  
Verena Krähling ◽  
Larissa Kolesnikova ◽  
Sandro Halwe ◽  
Clemens Lier ◽  
...  

ABSTRACT Ebola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV VP30 has been described as a viral phosphoprotein, and nonphosphorylated VP30 is essential and sufficient to support secondary transcription in an EBOV-specific minigenome system; however, phosphorylatable serine residues near the N terminus of VP30 are required to support primary viral transcription as well as the reinitiation of VP30-mediated transcription at internal EBOV genes. While the dephosphorylation of VP30 by the cellular phosphatase PP2A was found to be mediated by nucleoprotein, the VP30-specific kinases and the role of phosphorylation remain unknown. Here, we report that serine-arginine protein kinase 1 (SRPK1) and SRPK2 phosphorylate serine 29 of VP30, which is located in an N-terminal R26xxS29 motif. Interaction with VP30 via the R26xxS29 motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis, and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription. Thus, the identification of SRPK1 is an important mosaic stone that completes our picture of the players involved in Ebola virus transcription regulation. IMPORTANCE The largest Ebola virus (EBOV) epidemic in West Africa ever caused more than 28,000 cases and 11,000 deaths, and the current EBOV epidemic in the Democratic Republic of the Congo continues, with more than 3,000 cases to date. Therefore, it is essential to develop antivirals against EBOV. Recently, an inhibitor of the cellular phosphatase PP2A-mediated dephosphorylation of the EBOV transcription factor VP30 has been shown to suppress the spread of Ebola virus. Here, we identified the protein kinase SRPK1 as a VP30-specific kinase that phosphorylates serine 29, the same residue that is dephosphorylated by PP2A. SRPK1-mediated phosphorylation of serine 29 enabled primary viral transcription. Mutation of the SRPK1 recognition motif in VP30 resulted in significant growth inhibition of EBOV. Similarly, elevation of the phosphorylation status of serine 29 by overexpression of SRPK1 inhibited EBOV growth, highlighting the importance of reversible phosphorylation of VP30 as a potential therapeutic target.


2018 ◽  
Vol 14 (3) ◽  
pp. e1006920 ◽  
Author(s):  
Charles-Adrien Richard ◽  
Vincent Rincheval ◽  
Safa Lassoued ◽  
Jenna Fix ◽  
Christophe Cardone ◽  
...  

2018 ◽  
Vol 218 (suppl_5) ◽  
pp. S627-S635 ◽  
Author(s):  
Tatiana Ammosova ◽  
Colette A Pietzsch ◽  
Yasemin Saygideğer ◽  
Andrey Ilatovsky ◽  
Xionghao Lin ◽  
...  

Open Biology ◽  
2014 ◽  
Vol 4 (1) ◽  
pp. 130138 ◽  
Author(s):  
Wei Theng Poh ◽  
Gaganmeet Singh Chadha ◽  
Peter J. Gillespie ◽  
Philipp Kaldis ◽  
J. Julian Blow

The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.


2007 ◽  
Vol 282 (30) ◽  
pp. 21838-21847 ◽  
Author(s):  
Jennifer A. Gibbons ◽  
Lukasz Kozubowski ◽  
Kelly Tatchell ◽  
Shirish Shenolikar

FEBS Letters ◽  
2004 ◽  
Vol 567 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Richard P. Munton ◽  
Sándor Vizi ◽  
Isabelle M. Mansuy

Sign in / Sign up

Export Citation Format

Share Document