scholarly journals A pH-dependent switch promotes β-synuclein fibril formation via glutamate residues

2017 ◽  
Vol 292 (39) ◽  
pp. 16368-16379 ◽  
Author(s):  
Gina M. Moriarty ◽  
Michael P. Olson ◽  
Tamr B. Atieh ◽  
Maria K. Janowska ◽  
Sagar D. Khare ◽  
...  
Prion ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Evgeny E. Bezsonov ◽  
Minna Groenning ◽  
Oxana V. Galzitskaya ◽  
Anton A. Gorkovskii ◽  
Gennady V. Semisotnov ◽  
...  

ChemBioChem ◽  
2014 ◽  
Vol 15 (11) ◽  
pp. 1529-1529
Author(s):  
Ryan P. McGlinchey ◽  
Zhiping Jiang ◽  
Jennifer C. Lee

ChemBioChem ◽  
2014 ◽  
Vol 15 (11) ◽  
pp. 1569-1572 ◽  
Author(s):  
Ryan P. McGlinchey ◽  
Zhiping Jiang ◽  
Jennifer C. Lee

2000 ◽  
Vol 349 (3) ◽  
pp. 877-883 ◽  
Author(s):  
Christy A. THOMSON ◽  
Vettai S. ANANTHANARAYANAN

Hsp47, a 47kDa heat shock protein whose expression level parallels that of collagen, has been regarded as a collagen-specific molecular chaperone. Studies from other laboratories have established the association of Hsp47 with the nascent as well as the triple-helical procollagen molecule in the endoplasmic reticulum and its dissociation from procollagen in the Golgi. One of several roles suggested for Hsp47 in collagen biosynthesis is the prevention of aggregation of procollagen in the endoplasmic reticulum. However, no experimental evidence has been available to verify this suggestion. In the present study we have followed the aggregation of mature triple-helical collagen molecules into fibrils by using turbidimetric measurements in the absence and presence of Hsp47. In the pH range 6–7, fibril formation of type I collagen, as monitored by turbidimetry, proceeds with a lag of approx. 10min and levels off by approx. 60min. The addition of Hsp47 at pH 7 effectively inhibits fibril formation at and above a 1:1 molar ratio of Hsp47 to triple-helical collagen. This inhibition is markedly pH-dependent, being significantly diminished at pH 6. CD and fluorescence spectral data of Hsp47 in the pH range 4.2–7.4 reveal a significant alteration in its structure at pH values below 6.2, with a decrease in α-helix and an increase in β-structure. This conformational change is likely to be the basis of the decreased binding of Hsp47 to collagen in vitro at pH 6.3 as well as its inability to inhibit collagen fibril formation at this pH. Our results also provide a functional assay for Hsp47 that can be used in studies on collagen and Hsp47 interactions.


Author(s):  
T. Shirahama ◽  
M. Skinner ◽  
A.S. Cohen

A1thought the mechanisms of amyloidogenesis have not been entirely clarified, proteolysis of the parent proteins may be one of the important steps in the amyloid fibril formation. Recently, we reported that "dense fibrillar inclusions" (DFI), which had the characteristics of lysosomes and contained organized fibrillar profiles as well, were observed in the reticuloendothelial cells in close association with the foci of new amyloid deposits. We considered the findings as evidence for the involvement of lysosomal system in amyloid fibril formation (l). In the present study, we attempted to determine the identity of the contents of the DFI by the use of antisera against the amyloid protein (AA) and an immuno-electron microscopic technique.Amyloidosis was induced in CBA/J mice by daily injections of casein (l). AA was isolated from amyloid-laden spleens by gel filtration and antibody to it was produced in rabbits (2). For immunocytochemistry, the unlabeled antibody enzyme method (3) was employed.


Author(s):  
Barry F. King ◽  
Grete N. Fry

The amnion surrounding the mammalian embryo consists of the amniotic epithelium facing the amniotic cavity, a layer of extraembryonic mesoderm bordering the exocoelom and an intervening layer of extracellular matrix (Fig. 1). During gestation the amnion expands remarkably to acommodate the rapidly growing embryo. In this study we have examined the process of collagen fibril formation in the developing amnion of the rhesus monkey between 20 and 60 days of gestation.Most cytological evidence of collagen fibril formation was observed in association with the extraembryonic mesodermal cells rather than the amniotic epithelium. The mesodermal cells h ad abundant cisternae of rough endoplasmic reticulum and a prominent Golgi apparatus. Elongated secretory vacuoles were associated with the Golgi apparatus and often contained parallel aggregates of fine filaments (Fig. 2). In some secretory vacuoles, periodic densities also were observed. Some striated collagen fibrils were observed in an apparent intracellular location in long, membrane-limited compartments (Fig. 3). Still other striated fibrils were observed in dense bodies, presumably lysosomes (Fig. 4).


1969 ◽  
Vol 21 (03) ◽  
pp. 573-579 ◽  
Author(s):  
P Fantl

SummaryTreatment of human and dog oxalated plasma with 0.2 to 1.0 × 10−1 M 2.3-dithiopropanol (BAL) or dithiothreitol (DTT) at 2–4° C for 30 min results in the reduction of the vitamin-K dependent clotting factors II, VII, IX and X to the respective-SH derivatives. The reaction is pH dependent. Under aerobic conditions the delayed one stage prothrombin time can be partly reversed. Under anaerobic conditions a gradual prolongation of the one stage prothrombin time occurs without reversal.In very diluted plasma treated with the dithiols, prothrombin can be converted into thrombin if serum as source of active factors VII and X is added. In contrast SH factors VII, IX and X are inactive in the specific tests. Reoxidation to active factors II, VII, IX and X takes place during adsorption and elution of the SH derivatives. The experiments have indicated that not only factor II but also factors VII, IX and X have active-S-S-centres.


2007 ◽  
Vol 30 (4) ◽  
pp. 92 ◽  
Author(s):  
K Potter ◽  
K Park

Background: Pancreatic islet transplantation offers improved glycemic control in type 1 diabetic patients above standard insulin therapy, ideally minimizing macro- and microvascular complications of diabetes mellitus. However success is limited thus far, with fewer than 10% of patients retaining insulin independence at two years post-transplantation. In addition to immune rejection, many non-immune factors may promote long-term graft secretory dysfunction and loss of viable graft mass. One such important non-immune factor may be the formation of islet amyloid, a pathologic lesion of the islet in type 2 diabetes that contributes to the progressive loss of b cells in that disease and that has been shown to form rapidly in human islets transplanted into NOD.scid mice. Amyloid deposits are composed primarily of the b cell secretory product islet amyloid polypeptide (IAPP), are cytotoxic, and develop in environments in which b cells are stressed. Heparin sulfate is used as an anti-coagulant in clinical islet transplantation and to prevent the instant blood-mediated inflammatory reaction (IBMIR), which occurs upon contact between islets and blood and may destroy a substantial proportion of the grafted islet mass. However, heparin is also known to stimulate amyloid fibril formation. Methods: To determine whether heparin may enhance amyloid formation in human islets and contribute to graft failure, we cultured isolated human islets in the presence or absence of heparin sulfate (42 and 420 units/ml) for 2 weeks in 11.1 mM glucose. Results: Histological assessment of sections of cultured islets for the presence of amyloid (by thioflavin S staining) revealed a marked, concentration-dependent increase in amyloid deposition following culture in the presence of heparin. Quantitative analysis of these sections showed that the proportion of islet area comprised of amyloid was increased approximately 2-fold (0.15%±0.12% vs 0.46%±0.15% of islet area) following culture in 42 units/ml heparin, and the proportion of islets in which amyloid was detectable (amyloid prevalence) was also increased (35%±24% vs 68%±10% of islets). At 420 units/ml heparin, the amyloid area was even greater (0.23%±0.15% vs 0.97%±0.42% of islet area) as was the amyloid prevalence (53%±29% vs 81%±14% of islets). To affirm that heparin can stimulate IAPP fibrillogenesis and enhance IAPP toxicity, we incubated synthetic human IAPP in the presence of heparin and measured amyloid formation in real time by thioflavin T fluorescence, and cell toxicity by Alamar blue viability assay in transformed rat (INS-1) ß-cell cultures. Heparin stimulated IAPP fibril formation and increased death of INS-1 cells exposed to IAPP (78.2%±10.9% vs 51.8%±12.2% of control viability), suggesting that heparin stimulates IAPP aggregation and toxicity. Remarkably, preliminary assessment of human islets cultured in heparin did not show increased islet cell death by TUNEL staining or loss of insulin immunostaining. Conclusion: In summary, heparin increases amyloid formation in cultured human islets. Although our preliminary data does not suggest that heparin-induced amyloid formation contributes to islet cell death, we speculate that heparin-induced amyloid formation may contribute to graft dysfunction and that caution should be used in the clinical application of this drug in islet transplantation.


Sign in / Sign up

Export Citation Format

Share Document