amyloidogenic peptides
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Saba Islam ◽  
Mirren Charnley ◽  
Guneet Bindra ◽  
Julian Ratcliffe ◽  
Jiangtao Zhou ◽  
...  

COVID-19 is primarily known as a respiratory disease caused by the virus SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, cognitive and psychiatric issues, severe headaches, and even stroke are reported in as many as 30% of cases and can persist even after the infection is over (so-called 'long COVID'). These neurological symptoms are thought to be caused by brain inflammation, triggered by the virus infecting the central nervous system of COVID-19 patients, however we still don't fully understand the mechanisms for these symptoms. The neurological effects of COVID-19 share many similarities to neurodegenerative diseases such as Alzheimer's and Parkinson's in which the presence of cytotoxic protein-based amyloid aggregates is a common etiological feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we performed a bioinformatic scan of the SARS-CoV-2 proteome, detecting peptide fragments that were predicted to be highly amyloidogenic. We selected two of these peptides and discovered that they do rapidly self-assemble into amyloid. Furthermore, these amyloid assemblies were shown to be highly toxic to a neuronal cell line. We introduce and support the idea that cytotoxic amyloid aggregates of SARS-CoV-2 proteins are causing some of the neurological symptoms commonly found in COVID-19 and contributing to long COVID, especially those symptoms which are novel to long COVID in contrast to other post-viral syndromes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3129
Author(s):  
Oxana V. Galzitskaya ◽  
Olga M. Selivanova ◽  
Elena Y. Gorbunova ◽  
Leila G. Mustaeva ◽  
Viacheslav N. Azev ◽  
...  

Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer’s, Parkinson’s and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures. Fibrils, biofilms and amyloid gels are promising objects for the developing field of research of nanobiotechnology. To develop methods for obtaining nanobiomaterials with desired properties, it is necessary to study the mechanism of such structure formation, as well as the influence of various factors on this process. In this work, we present the results of a study of the structure of biogels formed by four 10-membered amyloidogenic peptides: the VDSWNVLVAG peptide (AspNB) and its analogue VESWNVLVAG (GluNB), which are amyloidogenic fragments of the glucantransferase Bgl2p protein from a yeast cell wall, and amyloidogenic peptides Aβ(31–40), Aβ(33–42) from the Aβ(1–42) peptide. Based on the analysis of the data, we propose a possible mechanism for the formation of amyloid gels with these peptides.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001412
Author(s):  
Jenifer C. Kaldun ◽  
Shahnaz R. Lone ◽  
Ana M. Humbert Camps ◽  
Cornelia Fritsch ◽  
Yves F. Widmer ◽  
...  

Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aβ42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aβ42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aβ peptides.


2021 ◽  
Author(s):  
Mannkyu Hong ◽  
Mingeun Kim ◽  
Jiwon Yoon ◽  
Seung-Hee Lee ◽  
Mu-Hyun Baik ◽  
...  

Designing new chromophores by tuning their molecular structures and optimizing their photophysical properties leads to suitable photochromic features. Herein, we report a series of anthraquinone (AQ)-based photosensitizers that undergoes excited-state intramolecular hydrogen transfer and effectively oxidizes amyloidogenic peptides, which significantly affects the subsequent aggregation pathways. DFT calculations showed that the appropriate position of the hydroxyl groups in the AQ backbone and the consequent intramolecular hydrogen transfer can facilitate the energy transfer to triplet oxygen. Biochemical and biophysical investigations confirmed that these photoactive chemical reagents are able to oxidatively modify both metal-free amyloid-β (Aβ) and metal-bound Aβ, thereby redirecting their on-pathway aggregation into off-pathway as well as disassembling their pre-formed aggregates. Moreover, the in vivo histochemical analysis of Aβ species produced upon photoactivation of the most promising candidate demonstrated that they do not aggregate into toxic oligomeric or fibrillar aggregates in the brain. Overall, our combined computational and experimental studies validate a light-based approach for designing small molecules as chemical reagents targeting and controlling amyloidogenic peptides associated with neurodegenerative disorders.


2021 ◽  
Vol 8 ◽  
Author(s):  
Oxana V. Galzitskaya

Antimicrobial peptides (AMPs) and similar compounds are potential candidates for combating antibiotic-resistant bacteria. The hypothesis of directed co-aggregation of the target protein and an amyloidogenic peptide acting as an antimicrobial peptide was successfully tested for peptides synthesized on the basis of ribosomal S1 protein in the bacterial culture of T. thermophilus. Co-aggregation of the target protein and amyloidogenic peptide was also tested for the pathogenic ribosomal S1 protein from P. aeruginosa. Almost all peptides that we selected as AMPs, prone to aggregation and formation of fibrils, based on the amino acid sequence of ribosomal S1 protein from E. coli, T. thermophilus, P. aeruginosa, formed amyloid fibrils. We have demonstrated that amyloidogenic peptides are not only toxic to their target cells, but also some of them have antimicrobial activity. Controlling the aggregation of vital bacterial proteins can become one of the new directions of research and form the basis for the search and development of targeted antibacterial drugs.


2021 ◽  
Author(s):  
Bartosz Gabryelczyk ◽  
Margaret Philips ◽  
Kimberly Low ◽  
Anandalakshmi Venkatraman ◽  
Bhuvaneswari Kannaian ◽  
...  

Studying pathogenic effects of amyloids requires homogeneous amyloidogenic peptide samples. Recombinant production of these peptides is challenging due to their susceptibility to aggregation and chemical modifications. Thus, chemical synthesis is primarily used to produce amyloidogenic peptides suitable for high resolution structural studies. Here, we exploited the shielded environment of protein condensates formed via liquid-liquid phase separation (LLPS) as a protective mechanism against premature aggregation. We designed a fusion protein tag undergoing LLPS in E. coli and linked it to highly amyloidogenic peptides, including Aβ amyloid. We find that the fusion proteins form membraneless organelles during overexpression and remain soluble. We also developed a facile purification method of functional Aβ peptides free of chromatography steps. The strategy exploiting LLPS can be applied to other amyloidogenic, hydrophobic, and repetitive peptides that are otherwise difficult to produce.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Natalia Szulc ◽  
Michał Burdukiewicz ◽  
Marlena Gąsior-Głogowska ◽  
Jakub W. Wojciechowski ◽  
Jarosław Chilimoniuk ◽  
...  

AbstractSeveral disorders are related to amyloid aggregation of proteins, for example Alzheimer’s or Parkinson’s diseases. Amyloid proteins form fibrils of aggregated beta structures. This is preceded by formation of oligomers—the most cytotoxic species. Determining amyloidogenicity is tedious and costly. The most reliable identification of amyloids is obtained with high resolution microscopies, such as electron microscopy or atomic force microscopy (AFM). More frequently, less expensive and faster methods are used, especially infrared (IR) spectroscopy or Thioflavin T staining. Different experimental methods are not always concurrent, especially when amyloid peptides do not readily form fibrils but oligomers. This may lead to peptide misclassification and mislabeling. Several bioinformatics methods have been proposed for in-silico identification of amyloids, many of them based on machine learning. The effectiveness of these methods heavily depends on accurate annotation of the reference training data obtained from in-vitro experiments. We study how robust are bioinformatics methods to weak supervision, encountering imperfect training data. AmyloGram and three other amyloid predictors were applied. The results proved that a certain degree of misannotation in the reference data can be eliminated by the bioinformatics tools, even if they belonged to their training set. The computational results are supported by new experiments with IR and AFM methods.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1444
Author(s):  
Mario Caruana ◽  
Angelique Camilleri ◽  
Maria Ylenia Farrugia ◽  
Stephanie Ghio ◽  
Michaela Jakubíčková ◽  
...  

The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.


2021 ◽  
Author(s):  
Daniel Segal ◽  
Jan Munch ◽  
Ashim Paul ◽  
elad arad ◽  
Raz Jelinek ◽  
...  

Human semen contains various amyloidogenic peptides derived from Prostatic Acid Phosphatase (PAP) and Semenogelin proteins that are capable of enhancing HIV-1 infection when assembled into fibrils. The best characterized among...


Sign in / Sign up

Export Citation Format

Share Document