scholarly journals The Hepatitis E Virus Open Reading Frame 3 Protein Activates ERK through Binding and Inhibition of the MAPK Phosphatase

2004 ◽  
Vol 279 (27) ◽  
pp. 28345-28357 ◽  
Author(s):  
Anindita Kar-Roy ◽  
Hasan Korkaya ◽  
Ruchi Oberoi ◽  
Sunil Kumar Lal ◽  
Shahid Jameel
Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1385
Author(s):  
Giulia Pezzoni ◽  
Lidia Stercoli ◽  
Eleonora Pegoiani ◽  
Emiliana Brocchi

To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1–660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens’ immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394–608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394–608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461–544 aa. Only 5% of the selected HEV sera reacted against the ORF3 antigen.


2013 ◽  
Vol 86 (3) ◽  
pp. 487-495 ◽  
Author(s):  
Yan Zhou ◽  
Yansheng Geng ◽  
Jun Yang ◽  
Chenyan Zhao ◽  
Tim J. Harrison ◽  
...  

2019 ◽  
Vol 220 (5) ◽  
pp. 811-819 ◽  
Author(s):  
Ibrahim M Sayed ◽  
Lieven Verhoye ◽  
Claire Montpellier ◽  
Florence Abravanel ◽  
Jacques Izopet ◽  
...  

Abstract Background Hepatitis E virus infection (HEV) is an emerging problem in developed countries. Diagnosis of HEV infection is based on the detection of HEV-specific antibodies, viral RNA, and/or antigen (Ag). Humanized mice were previously reported as a model for the study of HEV infection, but published data were focused on the quantification of viral RNA. However, the kinetics of HEV Ag expression during infection remains poorly understood. Methods Plasma specimens and suspensions of fecal specimens from HEV-infected and ribavirin-treated humanized mice were analyzed using HEV antigen–specific enzyme-linked immunosorbent assay, reverse transcription–quantitative polymerase chain reaction analysis, density gradient analysis, and Western blotting. Result Open reading frame 2 (ORF2) Ag was detected in both plasma and stool from HEV-infected mice, and levels increased over time. Contrary to HEV RNA, ORF2 Ag levels were higher in mouse plasma than in stool. Interestingly, ORF2 was detected in plasma from mice that tested negative for HEV RNA in plasma but positive for HEV RNA in stool and was detected after viral clearance in mice that were treated with ribavirin. Plasma density gradient analysis revealed the presence of the noninfectious glycosylated form of ORF2. Conclusion ORF2 Ag can be used as a marker of active HEV infection and for assessment of the effect of antiviral therapy, especially when fecal samples are not available or molecular diagnostic tests are not accessible.


1999 ◽  
Vol 57 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Jihong Meng ◽  
Mian-er Cong ◽  
Xing Dai ◽  
Jacques Pillot ◽  
Michael A. Purdy ◽  
...  

2010 ◽  
Vol 84 (18) ◽  
pp. 9637-9641 ◽  
Author(s):  
Yogesh A. Karpe ◽  
Kavita S. Lole

ABSTRACT Hepatitis E virus (HEV) has a positive-sense RNA genome with a 5′-m7G cap. HEV open reading frame 1 (ORF1) encodes a polyprotein with multiple enzyme domains required for replication. HEV helicase is a nucleoside triphosphatase (NTPase) with the ability to unwind RNA duplexes in the 5′-to-3′ direction. When incubated with 5′-[γ-32P]RNA and 5′-[α-32P]RNA, HEV helicase released 32P only from 5′-[γ-32P]RNA, showing specificity for the γ-β-triphosphate bond. Removal of γ-phosphate from the 5′ end of the primary transcripts (pppRNA to ppRNA) by RNA triphosphatase is an essential step during cap formation. It is suggested that HEV employs the helicase to mediate the first step of 5′ cap synthesis.


2000 ◽  
Vol 60 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Israrul Haque Ansari ◽  
Santosh Kumar Nanda ◽  
Hemlata Durgapal ◽  
Shipra Agrawal ◽  
Sujit Kumar Mohanty ◽  
...  

1999 ◽  
Vol 1 (18) ◽  
pp. 1-16 ◽  
Author(s):  
Shahid Jameel

Hepatitis E virus (HEV) infection results in hepatitis E, an acute and self-limited disease. The virus is transmitted in a faecal–oral manner and is a major cause of viral hepatitis in much of the developing world, where it causes rampant sporadic infections and large epidemics. A curious feature of hepatitis E is the unusually high rates of mortality that are observed in pregnant women, in whom the disease is exacerbated by the development of fulminant liver disease. In the absence of viable in vitro propagation systems, several geographical isolates of HEV have been maintained in vivo in nonhuman primates and, subsequently, the viral genome has been cloned and sequenced. HEV has been classified provisionally into a separate family known as the HEV-like viruses, which has at least four recognised genotypes, but has only a single serotype. The viral genome is a positive-stranded (+)RNA of ~7.5 kb and encodes at least three proteins. Open reading frame 1 (ORF1) encodes the viral nonstructural polyprotein, which has domains that are homologous to some of the replication and processing enzymes found in other +RNA viruses. The HEV protein itself remains poorly characterised. The protein encoded by open reading frame 2 (ORF2) is the major HEV capsid protein, and the protein encoded by open reading frame 3 (ORF3) appears to be involved in virus–host interactions. Several questions related to the biology, epidemiology and pathogenesis of HEV remain unanswered; the progress of a few of these is reviewed here.


Sign in / Sign up

Export Citation Format

Share Document