sequencing and expression
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 7)

H-INDEX

57
(FIVE YEARS 0)

2021 ◽  
Vol 11 (11) ◽  
Author(s):  
James B. Studd ◽  
Alex J. Cornish ◽  
Phuc H. Hoang ◽  
Philip Law ◽  
Ben Kinnersley ◽  
...  

AbstractTo obtain a comprehensive picture of composite genetic driver events and clonal dynamics in subtypes of paediatric acute lymphoblastic leukaemia (ALL) we analysed tumour-normal whole genome sequencing and expression data from 361 newly diagnosed patients. We report the identification of both structural drivers, as well as recurrent non-coding variation in promoters. Additionally we found the transcriptional profile of histone gene cluster 1 and CTCF altered tumours shared hallmarks of hyperdiploid ALL suggesting a ‘hyperdiploid like’ subtype. ALL subtypes are driven by distinct mutational processes with AID mutagenesis being confined to ETV6-RUNX1 tumours. Subclonality is a ubiquitous feature of ALL, consistent with Darwinian evolution driving selection and expansion of tumours. Driver mutations in B-cell developmental genes (IKZF1, PAX5, ZEB2) tend to be clonal and RAS/RTK mutations subclonal. In addition to identifying new avenues for therapeutic exploitation, this analysis highlights that targeted therapies should take into account composite mutational profile and clonality.


2021 ◽  
Author(s):  
James Studd ◽  
Alex Cornish ◽  
Phuc Hoang ◽  
Philip Law ◽  
Richard Houlston

Abstract To obtain a comprehensive picture of composite genetic drivers events and clonal dynamics in subtypes of paediatric acute lymphoblastic leukaemia (ALL) we analysed tumour-normal whole genome sequencing and expression data from 361 newly diagnosed patients. We report the identification of both novel coding and structural drivers as well as recurrent non-coding variation in promoters and cis-regulatory regions. The transcriptional profile of histone gene cluster 1 and CTCF altered tumours shared hallmarks of hyperdiploid ALL suggesting a ‘hyperdiploid like’ subtype. ALL subtypes are driven by distinct mutational processes with AID mutagenesis being confined to ETV6-RUNX1 tumours. Subclonality is a ubiquitous feature of ALL, consistent with Darwinian evolution driving selection and expansion of tumours. Driver mutations in B-cell developmental genes (IKZF1, PAX5, ZEB2) tend to be clonal and RAS/RTK mutations subclonal. In addition to identifying new avenues for therapeutic exploitation this analysis highlights that targeted therapies should take into account composite mutational profile and clonality.


2020 ◽  
Vol 21 (21) ◽  
pp. 8401
Author(s):  
Joram Kiriga Waititu ◽  
Chunyi Zhang ◽  
Jun Liu ◽  
Huan Wang

As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.


2019 ◽  
Author(s):  
Muneefah A. Alenezi ◽  
Tariq M. Butt ◽  
Daniel C. Eastwood

ABSTRACTMicroRNAs (miRNAs) play an important role in regulating gene expression and are involved in developmental processes in animals, plants and fungi. To understand the role of miRNAs in a biological system, it is important to optimise the extraction procedures to obtain high quality and quantity nucleic acid that enable high throughput sequencing and expression analysis. Numerous kit-based miRNA extraction protocols have been optimised generally to single cell or tissue cultures. Fungi, however, often occupy physically and chemically complex environments which miRNA make extraction challenging, such as fungal pathogens interacting within plant or animal host tissue. We used aGalleria mellonella(wax moth) larvae and entomopathogenic fungusMetarhizium brunneum ARSEF 4556host/pathogen model to compare commercially available miRNA extraction kits (Invitrogen PureLink™ miRNA Isolation Kit, Ambion mirVana™miRNA Isolation Kit and Norgen microRNA purification Kit). Our results showed reproducible and significant differences in miRNAs extraction between the kits, with the Invitrogen PureLink™ miRNA Isolation protocol demonstrating the best performance in terms of miRNA quantity, quality and integrity isolated from fungus-infected insect tissue.


2018 ◽  
Author(s):  
Stephanie Feupe Fotsing ◽  
Jonathan Margoliash ◽  
Catherine Wang ◽  
Shubham Saini ◽  
Richard Yanicky ◽  
...  

AbstractShort tandem repeats (STRs) have been implicated in a variety of complex traits in humans. However, genome-wide studies of the effects of STRs on gene expression thus far have had limited power to detect associations and provide insights into putative mechanisms. Here, we leverage whole genome sequencing and expression data for 17 tissues from the Genotype-Tissue Expression Project (GTEx) to identify STRs for which repeat number is associated with expression of nearby genes (eSTRs). Our analysis reveals more than 28,000 eSTRs. We employ fine-mapping to quantify the probability that each eSTR is causal and characterize a group of the top 1,400 fine-mapped eSTRs. We identify hundreds of eSTRs linked with published GWAS signals and implicate specific eSTRs in complex traits including height and schizophrenia, inflammatory bowel disease, and intelligence. Overall, our results support the hypothesis that eSTRs contribute to a range of human phenotypes and will serve as a valuable resource for future studies of complex traits.


Author(s):  
Helena C. Silva de Assis ◽  
Laia Navarro-Martín ◽  
Letícia S.P. Fernandes ◽  
Cibele C. Cardoso ◽  
Daniela Parada Pavoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document