scholarly journals Vascular Endothelial Growth Factor- and Thrombin-induced Termination Factor, Down Syndrome Critical Region-1, Attenuates Endothelial Cell Proliferation and Angiogenesis

2004 ◽  
Vol 279 (48) ◽  
pp. 50537-50554 ◽  
Author(s):  
Takashi Minami ◽  
Keiko Horiuchi ◽  
Mai Miura ◽  
Md. Ruhul Abid ◽  
Wakako Takabe ◽  
...  
Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 6076-6083 ◽  
Author(s):  
Graham W. Aberdeen ◽  
Stanley J. Wiegand ◽  
Thomas W. Bonagura ◽  
Gerald J. Pepe ◽  
Eugene D. Albrecht

To assess whether there is a link between estrogen, vascular endothelial growth factor (VEGF), and early aspects of uterine angiogenesis, an acute temporal study was conducted in which ovariectomized baboons were pretreated with VEGF Trap, which sequesters endogenous VEGF, and administered estradiol at time 0 h. Serum estradiol levels approximated 500 pg/ml 4–6 h after estradiol administration. VEGF mRNA levels in endometrial glandular epithelial and stromal cells were increased to values 6 h after estradiol that were 3.74 ± 0.99-fold (mean ± se) and 5.70 ± 1.60-fold greater (P < 0.05), respectively, than at 0 h. Microvessel interendothelial cell tight junctions, which control paracellular permeability, were present in the endometrium at time 0 h, but not evident 6 h after estradiol administration. Thus, microvessel paracellular cleft width increased (P < 0.01, ANOVA) from 5.03 ± 0.22 nm at 0 h to 7.27 ± 0.48 nm 6 h after estrogen. In contrast, tight junctions remained intact, and paracellular cleft widths were unaltered in estradiol/VEGF Trap and vehicle-treated animals. Endometrial microvessel endothelial cell mitosis, i.e. percent Ki67+/Ki67− immunolabeled endothelial cells, increased (P < 0.05) from 2.9 ± 0.3% at 0 h to 21.4 ± 7.0% 6 h after estrogen treatment but was unchanged in estradiol/VEGF Trap and vehicle-treated animals. In summary, the estrogen-induced disruption of endometrial microvessel endothelial tight junctions and increase in endothelial cell proliferation were prevented by VEGF Trap. Therefore, we propose that VEGF mediates the estrogen-induced increase in microvessel permeability and endothelial cell proliferation as early steps in angiogenesis in the primate endometrium.


Sign in / Sign up

Export Citation Format

Share Document