scholarly journals Vascular Endothelial Growth Factor Mediates the Estrogen-Induced Breakdown of Tight Junctions between and Increase in Proliferation of Microvessel Endothelial Cells in the Baboon Endometrium

Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 6076-6083 ◽  
Author(s):  
Graham W. Aberdeen ◽  
Stanley J. Wiegand ◽  
Thomas W. Bonagura ◽  
Gerald J. Pepe ◽  
Eugene D. Albrecht

To assess whether there is a link between estrogen, vascular endothelial growth factor (VEGF), and early aspects of uterine angiogenesis, an acute temporal study was conducted in which ovariectomized baboons were pretreated with VEGF Trap, which sequesters endogenous VEGF, and administered estradiol at time 0 h. Serum estradiol levels approximated 500 pg/ml 4–6 h after estradiol administration. VEGF mRNA levels in endometrial glandular epithelial and stromal cells were increased to values 6 h after estradiol that were 3.74 ± 0.99-fold (mean ± se) and 5.70 ± 1.60-fold greater (P < 0.05), respectively, than at 0 h. Microvessel interendothelial cell tight junctions, which control paracellular permeability, were present in the endometrium at time 0 h, but not evident 6 h after estradiol administration. Thus, microvessel paracellular cleft width increased (P < 0.01, ANOVA) from 5.03 ± 0.22 nm at 0 h to 7.27 ± 0.48 nm 6 h after estrogen. In contrast, tight junctions remained intact, and paracellular cleft widths were unaltered in estradiol/VEGF Trap and vehicle-treated animals. Endometrial microvessel endothelial cell mitosis, i.e. percent Ki67+/Ki67− immunolabeled endothelial cells, increased (P < 0.05) from 2.9 ± 0.3% at 0 h to 21.4 ± 7.0% 6 h after estrogen treatment but was unchanged in estradiol/VEGF Trap and vehicle-treated animals. In summary, the estrogen-induced disruption of endometrial microvessel endothelial tight junctions and increase in endothelial cell proliferation were prevented by VEGF Trap. Therefore, we propose that VEGF mediates the estrogen-induced increase in microvessel permeability and endothelial cell proliferation as early steps in angiogenesis in the primate endometrium.

2001 ◽  
Vol 168 (3) ◽  
pp. 409-416 ◽  
Author(s):  
SE Dickson ◽  
R Bicknell ◽  
HM Fraser

Vascular endothelial growth factor (VEGF) is essential for the angiogenesis required for the formation of the corpus luteum; however, its role in ongoing luteal angiogenesis and in the maintenance of the established vascular network is unknown. The aim of this study was to determine whether VEGF inhibition could intervene in ongoing luteal angiogenesis using immunoneutralisation of VEGF starting in the mid-luteal phase. In addition, the effects on endothelial cell survival and the recruitment of periendothelial support cells were examined. Treatment with a monoclonal antibody to VEGF, or mouse gamma globulin for control animals, commenced on day 7 after ovulation and continued for 3 days. Bromodeoxyuridine (BrdU), used to label proliferating cells to obtain a proliferation index, was administered one hour before collecting ovaries from control and treated animals. Ovarian sections were stained using antibodies to BrdU, the endothelial cell marker, CD31, the pericyte marker, alpha-smooth muscle actin, and 3' end DNA fragments as a marker for apoptosis. VEGF immunoneutralisation significantly suppressed endothelial cell proliferation and the area occupied by endothelial cells while increasing pericyte coverage and the incidence of endothelial cell apoptosis. Luteal function was markedly compromised by anti-VEGF treatment as judged by a 50% reduction in plasma progesterone concentration. It is concluded that ongoing angiogenesis in the mid-luteal phase is primarily driven by VEGF, and that a proportion of endothelial cells of the mid-luteal phase vasculature are dependent on VEGF support.


Sign in / Sign up

Export Citation Format

Share Document