scholarly journals Ubiquitin Ligase Activity of c-Cbl Guides the Epidermal Growth Factor Receptor into Clathrin-coated Pits by Two Distinct Modes of Eps15 Recruitment

2004 ◽  
Vol 279 (53) ◽  
pp. 55465-55473 ◽  
Author(s):  
Annemieke A. de Melker ◽  
Gerda van der Horst ◽  
Jannie Borst
2021 ◽  
Author(s):  
Riham Ayoubi ◽  
Peter S. McPherson ◽  
Annie Angers

AbstractOnce activated by ligand, epidermal growth factor receptor (EGFR) is endocytosed in clathrin-coated pits. ITCH is an E3 ubiquitin ligase that interacts with and ubiquitinates several proteins involved in clathrin-mediated endocytosis (CME) including endophilin. To further investigate the function of ITCH in EGFR endocytosis, the internalization of fluorescent EGF was measured in ITCH-/- HeLa cells. In the absence of ITCH, there was a significant decrease in the CME of EGF. Rescue experiments using wild-type ITCH confirmed the importance of the protein for normal EGF uptake. ITCH point mutations that disrupt the interaction of ITCH with endophilin failed to rescue the defects in EGFR uptake, as did a non-catalytic form of ITCH. ITCH-/- cells also displayed a delay in the rate of phospho-EGFR degradation as well as prolonged ERK1/2 signaling. Our study uncovers a pathway regulating EGFR trafficking and reveals for the first time that the protein ITCH is required for CME of EGFR.


2008 ◽  
Vol 180 (6) ◽  
pp. 1205-1218 ◽  
Author(s):  
Ingrid Roxrud ◽  
Camilla Raiborg ◽  
Nina Marie Pedersen ◽  
Espen Stang ◽  
Harald Stenmark

Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.


2005 ◽  
Vol 16 (12) ◽  
pp. 5832-5842 ◽  
Author(s):  
Camilla Haslekås ◽  
Kamilla Breen ◽  
Ketil W. Pedersen ◽  
Lene E. Johannessen ◽  
Espen Stang ◽  
...  

By constructing stably transfected cells harboring the same amount of epidermal growth factor (EGF) receptor (EGFR), but with increasing overexpression of ErbB2, we have demonstrated that ErbB2 efficiently inhibits internalization of ligand-bound EGFR. Apparently, ErbB2 inhibits internalization of EGF-bound EGFR by constitutively driving EGFR-ErbB2 hetero/oligomerization. We have demonstrated that ErbB2 does not inhibit phosphorylation or ubiquitination of the EGFR. Our data further indicate that the endocytosis deficiency of ErbB2 and of EGFR-ErbB2 heterodimers/oligomers cannot be explained by anchoring of ErbB2 to PDZ-containing proteins such as Erbin. Instead, we demonstrate that in contrast to EGFR homodimers, which are capable of inducing new clathrin-coated pits in serum-starved cells upon incubation with EGF, clathrin-coated pits are not induced upon activation of EGFR-ErbB2 heterodimers/oligomers.


2017 ◽  
Vol 28 (21) ◽  
pp. 2802-2818 ◽  
Author(s):  
Ralph Christian Delos Santos ◽  
Stephen Bautista ◽  
Stefanie Lucarelli ◽  
Leslie N. Bone ◽  
Roya M. Dayam ◽  
...  

Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes.


Sign in / Sign up

Export Citation Format

Share Document