scholarly journals The Structural Integrity of Anion Binding Exosite I of Thrombin Is Required and Sufficient for Timely Cleavage and Activation of Factor V and Factor VIII

2006 ◽  
Vol 281 (27) ◽  
pp. 18569-18580 ◽  
Author(s):  
Michael A. Bukys ◽  
Tivadar Orban ◽  
Paul Y. Kim ◽  
Daniel O. Beck ◽  
Michael E. Nesheim ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1951-1951
Author(s):  
Michael A. Bukys ◽  
Tivadar Orban ◽  
Paul Y. Kim ◽  
Michael E. Nesheim ◽  
Michael Kalafatis

Abstract The intrinsic tenase complex and the prothrombinase complex are composed of an enzyme, a cofactor, and the substrate associated on a cell surface in the presence of divalent metal ions. Incorporation of the protein cofactor in both complexes results in a substantial increase in the catalytic efficiency of both enzymes, factor IXa and factor Xa, for cleavage and activation of factor X and prothrombin respectively, resulting in normal hemostasis. The procofactors, factor V (FV) and factor VIII (fVIII), do not interact with the components of prothrombinase and intrinsic tenase respectively and must be activated. α-Thrombin has two separate electropositive binding exosites (anion binding exosite I, ABE-I and anion binding exosite II, ABE-II) that are involved in substrate binding necessary for efficient catalysis. α-Thrombin catalyzes the activation of fV and fVIII following discrete proteolytic cleavages. Requirement for both anion binding exosites of the enzyme has been suggested for the activation of both procofactors by α-thrombin. We have used plasma-derived α-thrombin, β-thrombin (a thrombin molecule that has only ABE-II available) and a recombinant prothrombin molecule rMz-II (R155A/R284A/R271A) that can only be cleaved at Arg320 (resulting in an enzymatically active molecule that has only ABE-I exposed, rMZ-IIa) to ascertain the role of each exosite for procofactor activation. We have also employed a sulfated pentapeptide (DY(SO3−)DY(SO3−)Q, named D5Q1,2) as exosite-directed inhibitor of thrombin. D5Q1,2 was found to increase thrombin time in a dose dependent manner yielding an eight-fold increase in thrombin time at 250 μM in the presence of 10 nM α-thrombin. This clotting time was equivalent to the thrombin time obtained with 10 nM β-thrombin alone. The clotting time of rMZ-IIa was increased four-fold compared to the clotting time of α-thrombin under similar experimental conditions. α-Thrombin readily activated fV following cleavages at Arg709, Arg1018, and Arg1545 and fVIII following proteolysis at Arg372, Arg740, and Arg1689. Cleavage of both procofactors by α-thrombin was significantly inhibited by D5Q1,2. In contrast, β-thrombin was unable to cleave fV at Arg1545 and fVIII at both Arg372 and Arg1689. The former is required for expression of factor Va (fVa) cofactor activity while the latter two cleavages are a prerequisite for expression of factor VIIIa (fVIIIa) cofactor activity. β-Thrombin was found to cleave fV at Arg709 and fVIII at Arg740, albeit less efficiently than α-thrombin. D5Q1,2 inhibited moderately both cleavages by β-thrombin. Under similar experimental conditions, membrane-bound rMZ-IIa cleaved and activated both procofactor molecules with a rate similar to that observed for the activation of fV and fVIII by α-thrombin. Activation of the two procofactors by membrane-bound rMZ-IIa was severely impaired by D5Q1,2. These data demonstrate that ABE-I alone of α-thrombin can account for the interaction of both procofactors with α-thrombin resulting in their timely and efficient activation. Our data also show that a sulfated pentapeptide inhibits several procoagulant ABE-I-related functions of α-thrombin and provide a target as well as the scaffold for the synthesis of an exosite-directed anticoagulant molecule that could inhibit and/or attenuate therapeutically thrombin function in individuals with thrombotic tendencies.


1976 ◽  
Vol 35 (02) ◽  
pp. 305-313 ◽  
Author(s):  
D.C Triantaphyllopoulos ◽  
L.T Ryan

SummaryThe simultaneous addition of suboptimal concentrations of factor VIII and intact or plas-min-lysed fibrinogen into mixtures of the vitamin K dependent factors, phospholipids, adsorbed bovine serum (supplier of factor V) and calcium, increased the amount of thrombin which was generated three to twenty times over the sum of the amounts which were generated when factor VIII, or fibrinogen, or its derivatives were added separately into the thrombin generating mixture. When factor VIII was added together with both fibrinogen and its derivatives, the amount of thrombin generated was even greater, about 130% larger than the amount which was generated in the presence of equal concentrations of only intact fibrinogen plus factor VIII. Addition of albumin instead of fibrinogen or its derivatives has a similar but significantly lower effect on thrombin generation. It appears, therefore, that both intact fibrinogen and its plasminolytic derivatives, singly or in combination, and to a lesser extent albumin, act as cofactors in the reaction which is regulated by factor VIII.


1974 ◽  
Vol 31 (03) ◽  
pp. 420-428 ◽  
Author(s):  
M Fainaru ◽  
S Eisenberg ◽  
N Manny ◽  
C Hershko

SummaryThe natural course of defibrination syndrome caused by Echis colorata venom (ECV) in five patients is reported. All patients developed afibrinogenemia within six hours after the bite. Concomitantly a depression in factor V was recorded. Factor VIII and thrombocyte count in blood were normal in most patients. In the light of the known effects of ECV on blood coagulation in vivo and in vitro it is concluded that the afibrinogenemia is due to intravascular clotting.Four patients had transient renal damage, manifested by oliguria, azotemia, albuminuria and cylindruria, ascribed to microthrombi in the renal glomeruli.After the bite, the natural course was benign, no major bleeding was observed, and all signs of coagulopathy reverted to normal within 7 days. Therefore we recommend no specific treatment for this condition. In the case of heavily bleeding patients, administration of antiserum against ECV and/or heparin should be considered.


1970 ◽  
Vol 23 (03) ◽  
pp. 593-600
Author(s):  
P Pudlák ◽  
I Farská ◽  
V Brabec ◽  
V Pospíšilová

Summary1. The following coagulation changes were found in rats with experimental hypersplenism: a mild prolongation of the recalcification time, shortened times in Quick’s test, a lowered activity in plasma thrombin time and shortened times in the partial thromboplastin test. Concentrations of factor II, V, VII (+X), VIII and X did not differ from those of normal control rats.2. The administration of adrenaline to hypersplenic rats induced the correction of the partial thromboplastin test, Quick’s test and plasma thrombin time to normal values. Concentrations of coagulation factors were not significantly changed. An increase was found in factor V.3. Splenectomy performed in hypersplenic rats was followed by a shortened recalcification time, a prolongation of the partial thromboplastin test and of the test with partial thromboplastin and kaolin. A prolongation was also observed in Quick’s test. Complete correction of plasma thrombin time was not observed. The concentration of factor VII increased.4. The administration of adrenaline to splenectomized rats with experimental hypersplenism did not induce any significant changes with the exception of a corrected plasma thrombin time and a decreased concentration of factor VIII.5. A different reaction of factor VIII to adrenaline in normal and hypersplenic rats is pointed out.


1965 ◽  
Vol 13 (02) ◽  
pp. 550-560 ◽  
Author(s):  
Anthony Britten

SummaryThe effects of incubating heparin, protamine or Polybrene with plasma were studied. All three drugs cause rapid loss of factor V from decalcified plasma, while Polybrene also accelerates the loss of factor VIII activity. These changes are related to temperature, the period of incubation and the dose of the drug used, and can be partially prevented by inclusion of neutralizing doses of the appropriate antagonist in the incubation mixture.The implications of these findings are discussed.


1989 ◽  
Vol 257 (1) ◽  
pp. 143-150 ◽  
Author(s):  
F A Ofosu ◽  
J Hirsh ◽  
C T Esmon ◽  
G J Modi ◽  
L M Smith ◽  
...  

We have proposed previously that the steps in coagulation most sensitive to inhibition by heparin are the thrombin-dependent amplification reactions, and that prothrombinase is formed in heparinized plasma only after Factor Xa activates Factor VIII and Factor V. These propositions were based on the demonstration that both heparin and Phe-Pro-Arg-CH2Cl completely inhibited 125I-prothrombin activation for up to 60 s when contact-activated plasma (CAP) was replenished with Ca2+. Furthermore, the addition of thrombin to CAP before heparin or Phe-Pro-Arg-CH2Cl completely reversed their inhibitory effects. Additional support for the above hypotheses is provided in this study by demonstrating that, when the activity of thrombin is suppressed by heparin (indirectly) or by Phe-Pro-Arg-CH2Cl (directly), exogenous Factor Xa reverses the ability of these two agents to inhibit prothrombin activation. Prothrombin activation was initiated by adding Factor Xa (1 nM) or thrombin (1 or 10 nM) simultaneously with CaCl2 to CAP. In the absence of heparin or Phe-Pro-Arg-CH2Cl, prothrombin activation was seen 15 s later in either case. Heparin failed to delay, and Phe-Pro-Arg-CH2Cl delayed for 15 s, prothrombin activation in CAP supplemented with Factor Xa. In contrast, heparin and Phe-Pro-Arg-CH2Cl completely inhibited prothrombin activation for at least 45 s in CAP supplemented with 1 nM-thrombin. Heparin failed to delay prothrombin activation in CAP supplemented with 10 nM-thrombin, whereas Phe-Pro-Arg-CH2Cl completely inhibited prothrombin activation in this plasma for 45 s. These results suggest that in CAP: (1) Factor Xa can effectively activate Factor VIII and Factor V when the proteolytic activity of thrombin is suppressed; (2) heparin-antithrombin III is less able to inhibit Factor Xa than thrombin; (3) suppression of the thrombin-dependent amplification reactions is the primary anticoagulant effect of heparin.


2011 ◽  
Vol 435 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Valerie A. Novakovic ◽  
David B. Cullinan ◽  
Hironao Wakabayashi ◽  
Philip J. Fay ◽  
James D. Baleja ◽  
...  

Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa–Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain. In the present study, we prepared an fVIII-C2 (Factor VIII C2 domain) construct from Escherichia coli, and confirmed its structural integrity through binding of three distinct monoclonal antibodies. Solution-phase assays, performed with flow cytometry and FRET (fluorescence resonance energy transfer), revealed that fVIII-C2 membrane affinity was approx. 40-fold lower than intact Factor VIII. In contrast with the similarly structured C2 domain of lactadherin, fVIII-C2 membrane binding was inhibited by physiological NaCl. fVIII-C2 binding was also not specific for phosphatidylserine over other negatively charged phospholipids, whereas a Factor VIII construct lacking the C2 domain retained phosphatidyl-L-serine specificity. fVIII-C2 slightly enhanced the cleavage of Factor X by Factor IXa, but did not compete with Factor VIII for membrane-binding sites or inhibit the Factor Xase complex. Our results indicate that the C2 domain in isolation does not recapitulate the characteristic membrane binding of Factor VIII, emphasizing that its role is co-operative with other domains of the intact Factor VIII molecule.


Sign in / Sign up

Export Citation Format

Share Document