scholarly journals Site-specific Fucosylation of Sialylated Polylactosamines by α1,3/4-Fucosyltransferases-V and -VI Is Defined by Amino Acids Near the N Terminus of the Catalytic Domain

2007 ◽  
Vol 282 (34) ◽  
pp. 24882-24892 ◽  
Author(s):  
Susan Shetterly ◽  
Franziska Jost ◽  
Susan R. Watson ◽  
Ronald Knegtel ◽  
Bruce A. Macher ◽  
...  
1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Jessica Swanson ◽  
Rennos Fragkoudis ◽  
Philippa C. Hawes ◽  
Joseph Newman ◽  
Alison Burman ◽  
...  

The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of the economically important disease of livestock, foot-and-mouth disease (FMD). VP4 is a highly conserved capsid protein, which is important during virus entry. Previous published work has shown that antibodies targeting the N-terminus of VP4 of the picornavirus human rhinovirus are broadly neutralising. In addition, previous studies showed that immunisation with the N-terminal 20 amino acids of enterovirus A71 VP4 displayed on the hepatitis B core (HBc) virus-like particles (VLP) can induce cross-genotype neutralisation. To investigate if a similar neutralising response against FMDV VP4 could be generated, HBc VLPs displaying the N-terminus of FMDV VP4 were designed. The N-terminal 15 amino acids of FMDV VP4 was inserted into the major immunodominant region. HBc VLPs were also decorated with peptides of the N-terminus of FMDV VP4 attached using a HBc-spike binding tag. Both types of VLPs were used to immunise mice and the resulting serum was investigated for VP4-specific antibodies. The VLP with VP4 inserted into the spike, induced VP4-specific antibodies, however the VLPs with peptides attached to the spikes did not. The VP4-specific antibodies could recognise native FMDV, but virus neutralisation was not demonstrated. This work shows that the HBc VLP presents a useful tool for the presentation of FMDV capsid epitopes.


Author(s):  
Hyo Sang Jang ◽  
Xiaodong Gu ◽  
Richard B. Cooley ◽  
Joseph J. Porter ◽  
Rachel L. Henson ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 926
Author(s):  
Maria C. Martins ◽  
Susana F. Fernandes ◽  
Bruno A. Salgueiro ◽  
Jéssica C. Soares ◽  
Célia V. Romão ◽  
...  

Flavodiiron proteins (FDPs) are a family of modular and soluble enzymes endowed with nitric oxide and/or oxygen reductase activities, producing N2O or H2O, respectively. The FDP from Escherichia coli, which, apart from the two core domains, possesses a rubredoxin-like domain at the C-terminus (therefore named flavorubredoxin (FlRd)), is a bona fide NO reductase, exhibiting O2 reducing activity that is approximately ten times lower than that for NO. Among the flavorubredoxins, there is a strictly conserved amino acids motif, -G[S,T]SYN-, close to the catalytic diiron center. To assess its role in FlRd’s activity, we designed several site-directed mutants, replacing the conserved residues with hydrophobic or anionic ones. The mutants, which maintained the general characteristics of the wild type enzyme, including cofactor content and integrity of the diiron center, revealed a decrease of their oxygen reductase activity, while the NO reductase activity—specifically, its physiological function—was almost completely abolished in some of the mutants. Molecular modeling of the mutant proteins pointed to subtle changes in the predicted structures that resulted in the reduction of the hydration of the regions around the conserved residues, as well as in the elimination of hydrogen bonds, which may affect proton transfer and/or product release.


ChemInform ◽  
2016 ◽  
Vol 47 (19) ◽  
Author(s):  
Alford A. John ◽  
Carlo P. Ramil ◽  
Yulin Tian ◽  
Gang Cheng ◽  
Qing Lin
Keyword(s):  

1989 ◽  
Vol 14 (10) ◽  
pp. 400-403 ◽  
Author(s):  
Spencer J. Anthony-Cahill ◽  
Michael C. Griffith ◽  
Christopher J. Noren ◽  
Daniel J. Suich ◽  
Peter G. Schultz

Sign in / Sign up

Export Citation Format

Share Document