scholarly journals High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2

2018 ◽  
Vol 293 (35) ◽  
pp. 13750-13765 ◽  
Author(s):  
Nathan P. Coussens ◽  
Stephen C. Kales ◽  
Mark J. Henderson ◽  
Olivia W. Lee ◽  
Kurumi Y. Horiuchi ◽  
...  
2017 ◽  
Author(s):  
Nathan P. Coussens ◽  
Stephen C. Kales ◽  
Mark J. Henderson ◽  
Olivia W. Lee ◽  
Kurumi Y. Horiuchi ◽  
...  

AbstractThe activity of the histone lysine methyltransferase NSD2 is thought to play a driving role in oncogenesis. Both overexpression of NSD2 and point mutations that increase its catalytic activity are associated with a variety of human cancers. While NSD2 is an attractive therapeutic target, no potent, selective and cell-active inhibitors have been reported to date, possibly due to the challenging nature of developing high-throughput assays for NSD2. To establish a platform for the discovery and development of selective NSD2 inhibitors, multiple assays were optimized and implemented. Quantitative high-throughput screening was performed with full-length wild-type NSD2 and a nucleosome substrate against a diverse collection of known bioactives comprising 16,251 compounds. Actives from the primary screen were further interrogated with orthogonal and counter assays, as well as activity assays with the clinically relevant NSD2 mutants E1099K and T1150A. Five confirmed inhibitors were selected for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. The identification of NSD2 inhibitors that bind the catalytic SET domain and demonstrate activity in cells validates the workflow, providing a template for identifying selective NSD2 inhibitors.


2013 ◽  
Vol 170 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Margaret R. Duffy ◽  
Alan L. Parker ◽  
Eric R. Kalkman ◽  
Katie White ◽  
Dmytro Kovalskyy ◽  
...  

2007 ◽  
Vol 358 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Alex Crowe ◽  
Carlo Ballatore ◽  
Edward Hyde ◽  
John Q. Trojanowski ◽  
Virginia M.-Y. Lee

2010 ◽  
Vol 47 (13) ◽  
pp. 2283-2283
Author(s):  
Yuko Kimura ◽  
Chun-Hao Chiu ◽  
Andrew D. Napper ◽  
Scott L. Diamond ◽  
Wen-Chao Song

2004 ◽  
Vol 9 (5) ◽  
pp. 391-397 ◽  
Author(s):  
Chongbo Sun ◽  
Yvette Newbatt ◽  
Leon Douglas ◽  
Paul Workman ◽  
Wynne Aherne ◽  
...  

STK15/Aurora2 is a centrosome-associated serine/threonine kinase, the protein levels and kinase activity of which rise during G2 and mitosis. STK15 overexpression induces tumorigenesis and is amplified in various human cancers and tumor cell lines. Thus, STK15 represents an important therapeutic target for small molecule inhibitors that would disrupt its activity and block cell proliferation. The availability of a robust and selective small molecule inhibitor would also provide a useful tool for identification of the potential role of STK15 in cell cycle regulation and tumor development. The authors report the development of a novel, fast, simple microplate assay for STK15 activity suitable for high-throughput screening. In the assay, γ-33P-ATP and STK15 were incubated in a myelin basic protein (MBP)-coated FlashPlate® to generate a scintillation signal. The assay was reproducible, the signal-to-noise ratio was high (11) and the Z′ factor was 0.69. The assay was easily adapted to a robotic system for drug discovery programs targeting STK15. The authors also demonstrate that STK15 is regulated by phosphorylation and the N-amino terminal domain of the protein. Treatment with phosphatase inhibitors (okadaic acid) or deletion of the N-amino terminal domain results in a significant increase in the enzymatic activity.


2020 ◽  
Vol 25 (9) ◽  
pp. 985-999
Author(s):  
John Vincent ◽  
Marian Preston ◽  
Elizabeth Mouchet ◽  
Nicolas Laugier ◽  
Adam Corrigan ◽  
...  

Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein’s cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.


2011 ◽  
Vol 14 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Isaac M. Westwood ◽  
Akane Kawamura ◽  
Angela J. Russell ◽  
James Sandy ◽  
Stephen G. Davies ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document