scholarly journals Melanin deposition in two Cryptococcus species depends on cell-wall composition and flexibility

2020 ◽  
Vol 295 (7) ◽  
pp. 1815-1828 ◽  
Author(s):  
Christine Chrissian ◽  
Emma Camacho ◽  
Man Shun Fu ◽  
Rafael Prados-Rosales ◽  
Subhasish Chatterjee ◽  
...  

Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and “leaky melanin” mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.

2007 ◽  
Vol 98 (16) ◽  
pp. 2985-2992 ◽  
Author(s):  
Gautam Sarath ◽  
Lisa M. Baird ◽  
Kenneth P. Vogel ◽  
Robert B. Mitchell

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amandine Leroy ◽  
Xavier Falourd ◽  
Loïc Foucat ◽  
Valérie Méchin ◽  
Fabienne Guillon ◽  
...  

Abstract Background Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. Results HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β–O–4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in $${T}_{1\rho }^{H}$$ T 1 ρ H , $${T}_{HH}$$ T HH and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5–15 nm pore size range. Conclusion The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.


Author(s):  
Eliza Louback ◽  
Diego Silva Batista ◽  
Tiago Augusto Rodrigues Pereira ◽  
Talita Cristina Mamedes-Rodrigues ◽  
Tatiane Dulcineia Silva ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 1352-1361 ◽  
Author(s):  
Aaron J. Sindelar ◽  
Craig C. Sheaffer ◽  
John A. Lamb ◽  
Hans-Joachim G. Jung ◽  
Carl J. Rosen

2006 ◽  
Vol 38 (3-5) ◽  
pp. 180-190 ◽  
Author(s):  
Renato Bochicchio ◽  
Carmen L.O. Petkowicz ◽  
Iedo Alquini ◽  
Ana P. Busato ◽  
Fany Reicher

1972 ◽  
Vol 18 (7) ◽  
pp. 1168-1170 ◽  
Author(s):  
C. R. MacKenzie ◽  
D. C. Jordan

Mutation to viomycin-resistance in Rhizobium meliloti R21 resulted in an accumulation of phosphatidylcholine and phosphatidylethanolamine in the cell wall. Resistance to viomycin decreased when the excess lipid was removed by EDTA or when its synthesis was prevented by growth of normally resistant cells at 40 °C. Microelectrophoretic data showed binding of viomycin to the cell surface and it is proposed that the mechanism of resistance to viomycin is an immobilization of the antibiotic in the surface layers of the cell as a result of combination with phospholipid.


2009 ◽  
Vol 114 (3) ◽  
pp. 1042-1049 ◽  
Author(s):  
Catherine M.G.C. Renard ◽  
C. Ginies

Sign in / Sign up

Export Citation Format

Share Document