scholarly journals The role of cysteines in the structure and function of OGG1

2020 ◽  
pp. jbc.RA120.016126
Author(s):  
Katarina Wang ◽  
Marah Maayah ◽  
Joann B. Sweasy ◽  
Khadijeh S. Alnajjar

8-oxoguanine glycosylase (OGG1) is a base excision repair enzyme responsible for the recognition and removal of 8-oxoguanine, a commonly occurring oxidized DNA modification. OGG1 prevents the accumulation of mutations and regulates the transcription of various oxidative stress-response genes. In addition to targeting DNA, oxidative stress can affect proteins like OGG1 itself, specifically at cysteine residues. Previous work has shown that the function of OGG1 is sensitive to oxidants, with the cysteine residues of OGG1 being the most likely site of oxidation. Due to the integral role of OGG1 in maintaining cellular homeostasis under oxidative stress, it is important to understand the effect of oxidants on OGG1 and the role of cysteines in its structure and function. In this study, we investigate the role of the cysteine residues in the function of OGG1 by mutating and characterizing each cysteine residue. Our results indicate that the cysteines in OGG1 fall into four functional categories: those that are necessary for (1) glycosylase activity (C146 and C255), (2) lyase activity (C140S, C163, C241 and C253), (3) structural stability (C253), and (4) those with no known function (C28 and C75). These results suggest that under conditions of oxidative stress, cysteine can be targeted for modifications, thus altering the response of OGG1 and affecting its downstream cellular functions.

1997 ◽  
Vol 17 (3) ◽  
pp. 319-333 ◽  
Author(s):  
Anneke M. Wagner ◽  
Anthony L. Moore

Current understanding of the structure and function of the plant alternative oxidase is reviewed. In particular, the role of the oxidase in the protection of tissues against oxidative stress is developed.


Science ◽  
1987 ◽  
Vol 236 (4806) ◽  
pp. 1315-1318 ◽  
Author(s):  
N. Giese ◽  
K. Robbins ◽  
S. Aaronson

2014 ◽  
Vol 592 (5) ◽  
pp. 1009-1024 ◽  
Author(s):  
Nia C. S. Lewis ◽  
Damian M. Bailey ◽  
Gregory R. duManoir ◽  
Laura Messinger ◽  
Samuel J. E. Lucas ◽  
...  

2010 ◽  
Vol 88 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Hui Di Wang ◽  
Matthew T. Rätsep ◽  
Alexander Chapman ◽  
Ryan Boyd

The vascular adventitia, defined as the area between the external elastic lamina and the outermost edge of the blood vessel, is composed primarily of fibroblasts and for years was thought to be merely a passive structural support for the blood vessel. Consequently, studies pertaining to the role of the adventitia in regulating vascular function have been far outnumbered by those regarding the vascular endothelium. However, recent work has begun to reveal the dynamic properties of the adventitia. It was therefore the aim of this review to provide an overview of the existing knowledge demonstrating the role of the adventitia in regulating vessel structure and function. The main topics covered in this review include the cellular composition of the adventitia and the role of the adventitia in vascular oxidative stress, vasomotor responses, extracellular matrix protein expression, growth factor expression, and endothelin-1 (ET-1) expression. Recent evidence suggests that the adventitia is a major producer of vascular reactive oxygen species. It displays a distinct response to injury, hypoxia, and pulmonary hypertension, mediating vascular remodelling, repair, and extracellular matrix deposition. It may also play a role in regulating vascular tone. More recently, it has been reported that adventitial fibroblasts can produce ET-1 after Ang II treatment. Additionally, emerging evidence suggests that the adventitia may be a potent source of vasoactive hormones such as growth factors and ET-1, which may regulate vascular structure and function via autocrine or paracrine signalling mechanisms. Despite these findings, many important questions regarding the role of the vascular adventitia remain unanswered, suggesting the need for further research to determine its exact function in health and disease.


Sign in / Sign up

Export Citation Format

Share Document