Observing seed removal: remote video monitoring of seed selection, predation and dispersal.

Author(s):  
P. A. Jansen ◽  
J. den Ouden
Author(s):  
I Made Oka Widyantara ◽  
I Made Dwi Asana Putra ◽  
Ida Bagus Putu Adnyana

This paper intends to explain the development of Coastal Video Monitoring System (CoViMoS) with the main characteristics including low-cost and easy implementation. CoViMoS characteristics have been realized using the device IP camera for video image acquisition, and development of software applications with the main features including detection of shoreline and it changes are automatically. This capability was based on segmentation and classification techniques based on data mining. Detection of shoreline is done by segmenting a video image of the beach, to get a cluster of objects, namely land, sea and sky, using Self Organizing Map (SOM) algorithms. The mechanism of classification is done using K-Nearest Neighbor (K-NN) algorithms to provide the class labels to objects that have been generated on the segmentation process. Furthermore, the classification of land used as a reference object in the detection of costline. Implementation CoViMoS system for monitoring systems in Cucukan Beach, Gianyar regency, have shown that the developed system is able to detect the shoreline and its changes automatically.


2021 ◽  
Vol 19 (12) ◽  
pp. 2105-2112
Author(s):  
Matheus Vinicius Todescato ◽  
Jean Hilger ◽  
Guilherme Dal Bianco

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1565
Author(s):  
María Belén D’Amico ◽  
Guillermo R. Chantre ◽  
Guillermo L. Calandrini ◽  
José L. González-Andújar

Population models are particularly helpful for understanding long-term changes in the weed dynamics associated with integrated weed management (IWM) strategies. IWM practices for controlling L. rigidum are of high importance, mainly due to its widespread resistance that precludes chemical control as a single management method. The objective of this contribution is to simulate different IWM scenarios with special emphasis on the impact of different levels of barley sowing densities on L. rigidum control. To this effect, a weed–crop population model for both L. rigidum and barley life cycles was developed. Our results point out: (i) the necessity of achieving high control efficiencies (>99%), (ii) that the increase of twice the standard sowing density of barley resulted in a reduction of 23.7% of the weed density, (iii) non-herbicide-based individual methods, such as delayed sowing and weed seed removal at harvest, proved to be inefficient for reducing drastically weed population, (iv) the implementation of at least three control tactics (seed removal, delay sowing and herbicides) is required for weed infestation eradication independently of the sowing rate, and (v) the effect of an increase in the sowing density is diluted as a more demanding weed control is reached. Future research should aim to disentangle the effect of different weed resistance levels on L. rigidum population dynamics and the required efficiencies for more sustainable IWM programs.


Biotropica ◽  
2021 ◽  
Author(s):  
Selina A. Ruzi ◽  
Paul‐Camilo Zalamea ◽  
Daniel P. Roche ◽  
Rafael Achury ◽  
James W. Dalling ◽  
...  

2019 ◽  
Vol 38 (4) ◽  
pp. S199
Author(s):  
M. Zubrinic ◽  
N. Marks ◽  
L. Brzozowski ◽  
J. Qiu ◽  
D. Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document