Ticks and tick-borne pathogens in China.

2021 ◽  
pp. 492-499
Author(s):  
Hao Li ◽  
Li-Qun Fang ◽  
Wei Liu

Abstract This expert opinion provides an overview of the type and distribution of tick species and emerging tick-borne pathogens in tick vectors and human beings (such as Anaplasma, Babesia, spotted fever group rickettsiae, Borrelia and viruses) in China and considers the potential influence of global warming and climate change.

2014 ◽  
Vol 14 (7) ◽  
pp. 482-485 ◽  
Author(s):  
Tyler C. Henning ◽  
John M. Orr ◽  
Joshua D. Smith ◽  
Jorge R. Arias ◽  
Douglas E. Norris

2021 ◽  
pp. 307-317
Author(s):  
Abdallah Samy ◽  
Abdelghafar Alkishe ◽  
Tatjana Pustahija ◽  
Townsend Peterson

Abstract This expert opinion focuses on the impact of global warming and climate change on the distributional potential and population abundance of tick vectors and the occurrence and spread of tick-borne diseases.


Author(s):  
Esteban Arroyave ◽  
Emily Rose Cornwell ◽  
Jere Williams McBride ◽  
Carlos Arley Díaz ◽  
Marcelo Bahia Labruna ◽  
...  

Abstract Tick-borne rickettsial pathogens (TBRP) are important causes of infections in both dogs and humans. Dogs play an important role as a biological host for several tick species and can serve as sentinels for rickettsial infections. Our aim was to determine the presence of TBRP in dogs and in dog-associated ticks and their potential risk to human diseases in Medellin, Colombia. DNA for E. canis (16S rRNA and dsb) and A. platys (groEl) was detected in 17.6% (53/300) and 2.6% (8/300) of dogs, respectively. Antibodies against Ehrlichia spp. 82 (27.3%) and Anaplasma spp. 8 (2.6%) were detected in dogs. Antibody reactivity against both agents were found in 16 dogs (5.3%). Eight dogs showed antibody for Rickettsia spp. with titers that suggest 3 of them had a probable exposure to R. parkeri. Rhipicephalus sanguineus s.l. (178/193) was the main tick in dogs, followed by R. microplus (15/193). The minimum infection rates (MIR) in R. sanguineus were 11.8% for E. canis and 3.4% for A. platys. E. canis and A. platys are the main TBRP infecting dogs and ticks and R. sanguineus s.l. is likely involved in the transmission of both agents. Interestingly, we found serological evidence of exposure in dogs for spotted fever group rickettsiae.


Author(s):  
Matthew T Milholland ◽  
Lars Eisen ◽  
Robyn M Nadolny ◽  
Andrias Hojgaard ◽  
Erika T Machtinger ◽  
...  

Abstract Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and ‘Panola Mountain’ Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


2000 ◽  
Vol 51 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Hiromi FUJITA ◽  
Nobuhiro TAKADA ◽  
Emiko ISOGAI ◽  
Yuriko WATANABE ◽  
Takuya ITO

2014 ◽  
Vol 52 (11) ◽  
pp. 3960-3966 ◽  
Author(s):  
M. F. Vaughn ◽  
J. Delisle ◽  
J. Johnson ◽  
G. Daves ◽  
C. Williams ◽  
...  

Author(s):  
Ashley P G Dowling ◽  
Sean G Young ◽  
Kelly Loftin

Abstract Tick-borne diseases (TBD) in humans have dramatically increased over recent years and although the bulk of cases are attributable to Lyme Disease in the Northeastern US, TBDs like spotted fever rickettsiosis and ehrlichiosis heavily impact other parts of the country, namely the mid-south. Understanding tick and pathogen distributions and prevalence traditionally requires active surveillance, which quickly becomes logistically and financially unrealistic as the geographic area of focus increases. We report on a community science effort to survey ticks across Arkansas to obtain updated data on tick distributions and prevalence of human tick-borne disease-causing pathogens in the most commonly encountered ticks. During a 20-mo period, Arkansans submitted 9,002 ticks from 71 of the 75 counties in the state. Amblyomma americanum was the most common tick species received, accounting for 76% of total tick submissions. Nearly 6,000 samples were screened for spotted fever group Rickettsia (SFGR) and Ehrlichia, resulting in general prevalence rates of 37.4 and 5.1%, respectively. In addition, 145 ticks (2.5%) were infected with both SFGR and Ehrlichia. Arkansas Department of Health reported 2,281 spotted fever and 380 ehrlichiosis cases during the same period as our tick collections. Since known SFGR vectors Dermacentor variabilis and Amblyomma maculatum were not the most common ticks submitted, nor did they have the highest prevalence rates of SFGR, it appears that other tick species play the primary role in infecting humans with SFGR. Our investigation demonstrated the utility of community science to efficiently and economically survey ticks and identify vector-borne disease risk in Arkansas.


2018 ◽  
Vol 24 (11) ◽  
pp. 2105-2107 ◽  
Author(s):  
Xuhong Yin ◽  
Shengchun Guo ◽  
Chunlian Ding ◽  
Minzhi Cao ◽  
Hiroki Kawabata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document