Tick vectors, tick-borne diseases and climate change.

2021 ◽  
pp. 307-317
Author(s):  
Abdallah Samy ◽  
Abdelghafar Alkishe ◽  
Tatjana Pustahija ◽  
Townsend Peterson

Abstract This expert opinion focuses on the impact of global warming and climate change on the distributional potential and population abundance of tick vectors and the occurrence and spread of tick-borne diseases.

2021 ◽  
pp. 492-499
Author(s):  
Hao Li ◽  
Li-Qun Fang ◽  
Wei Liu

Abstract This expert opinion provides an overview of the type and distribution of tick species and emerging tick-borne pathogens in tick vectors and human beings (such as Anaplasma, Babesia, spotted fever group rickettsiae, Borrelia and viruses) in China and considers the potential influence of global warming and climate change.


2021 ◽  
pp. 391-399
Author(s):  
Mona Dehhaghi ◽  
Hamed Kazemi Shariat Panahi ◽  
Richard Schloeffel ◽  
Bernard Hudson ◽  
Benjamin Ruiwen ◽  
...  

Abstract This expert opinion focuses on the impact of global warming and climate change on the spread and distribution of Australian ticks and the prevalence and intensity of associated human diseases.


2021 ◽  
pp. 259-263
Author(s):  
Janet Foley

Abstract This expert opinion focuses on the impact of climate change events (such as drought, extreme precipitation and wind, global warming) on the emergence and abundance of tick-borne diseases.


2021 ◽  
pp. 500-506
Author(s):  
Agatha Kolo

Abstract This expert opinion focuses on the impact of global warming and climate change on the incidence, prevalence and distribution of rickettsial infections in Africa, with emphasis on Rickettsia africae, R. conorii, R. aeschlimannii, R. sibirica subsp. mongolotimonae and other tick-borne rickettsiae.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Mirko Andreja Borisov

Climate change conditions a wide range of impacts such as the impact on weather, but also on ecosystems and biodiversity, agriculture and forestry, human health, hydrological regime and energy. In addition to global warming, local factors affecting climate change are being considered. Presentation and analysis of the situation was carried out using geoinformation technologies (radar recording, remote detection, digital terrain modeling, cartographic visualization and geostatistics). This paper describes methods and use of statistical indicators such as LST, NDVI and linear correlations from which it can be concluded that accelerated construction and global warming had an impact on climate change in period from 1987 to 2018 in the area of Vojvodina – Republic of Serbia. Also, using the global SRTM DEM, it is shown how the temperature behaves based on altitude change. Conclusions and possible consequences in nature and society were derived.


2017 ◽  
Author(s):  
Sri Rum Giyarsih

Global warming is the increase in the average temperature of the Earth’s surface. According to the IPCC (Intergovernmental Panel on Climate Change) average temperature of the Earth’s surface was global warming is the increase in the average temperature of the 0.74 ± 0.18 0C (1.33 ± 0.32 F) over the last hundred years. The impact of rising temperatures is the climate change effect on agricultural production. If the community does not craft made adaptation to global warming will have an impact on food security. This research aims to know the society’s adaptation to food security as a result of global warming and to know the influence of global warming on food security. The research was carried out based on survey methods. The influence of global warming on food security is identified with a share of household food expenditure and the identification of rainfall. Sampling was done by random sampling. The Data used are the primary and secondary data. Primary Data obtained through structured interviews and depth interview using a questionnaire while the secondary data retrieved from publication data of the Central Bureau Statistics B(BPS), Department of Agriculture and Climatology Meteorology and Geophysics (BMKG). The expected results of the study is to know variations of food security due to global warming in Kulon Progo Regency. Comprehensive knowledge through community participation and related Government increased food security that is used as the basis for drafting the model society’s adaptation to the impacts of global warming.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2021 ◽  
pp. 449-454
Author(s):  
Dasiel Obregón Alvarez ◽  
Roxanne Albertha Charles ◽  
Agustín Estrada-Peña

Abstract This expert opinion refers to the most important ticks and tick-borne pathogens in the Caribbean and how global warming and climate change may influence their distribution in the next decades.


2008 ◽  
Vol 12 (1) ◽  
pp. 239-255 ◽  
Author(s):  
E. McBean ◽  
H. Motiee

Abstract. In the threshold of the appearance of global warming from theory to reality, extensive research has focused on predicting the impact of potential climate change on water resources using results from Global Circulation Models (GCMs). This research carries this further by statistical analyses of long term meteorological and hydrological data. Seventy years of historical trends in precipitation, temperature, and streamflows in the Great Lakes of North America are developed using long term regression analyses and Mann-Kendall statistics. The results generated by the two statistical procedures are in agreement and demonstrate that many of these variables are experiencing statistically significant increases over a seven-decade period. The trend lines of streamflows in the three rivers of St. Clair, Niagara and St. Lawrence, and precipitation levels over four of the five Great Lakes, show statistically significant increases in flows and precipitation. Further, precipitation rates as predicted using fitted regression lines are compared with scenarios from GCMs and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are higher than GCM predictions for Lakes Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted. Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes particularly for the precipitation in the Great Lakes Basin may be demonstrating influences arising from global warming and climate change.


2018 ◽  
Vol 3 (1) ◽  
pp. 273-283 ◽  
Author(s):  
Roberto Quiroz ◽  
David A. Ramírez ◽  
Jürgen Kroschel ◽  
Jorge Andrade-Piedra ◽  
Carolina Barreda ◽  
...  

Abstract The Andean region is the most important center of potato diversity in the world. The global warming trend which has taken place since the 1950s, that is 2-3 times the reported global warming and the continuous presence of extreme events makes this region a live laboratory to study the impact of climate change. In this review, we first present the current knowledge on climate change in the Andes, as compared to changes in other mountain areas, and the globe in general. Then, the review describes the ecophysiological strategies to cope and adapt to changes in atmospheric CO2 levels, temperature and soil water availability. As climate change also has a significant effect on the magnitude and frequency of the incidence of pests and diseases, the current knowledge of the dynamics of vectors in the Andean region is discussed. The use of modeling techniques to describe changes in the range expansion and number of insect pest generations per year as affected by increases in temperature is also presented. Finally, the review deals with the use of crop modeling to analyze the likely impact of projected climate scenarios on potato yield and tuber initiation.


Sign in / Sign up

Export Citation Format

Share Document