scholarly journals Effect of level of nutrition on splanchnic blood flow and oxygen consumption in sheep

1989 ◽  
Vol 62 (1) ◽  
pp. 23-34 ◽  
Author(s):  
D. G. Burrin ◽  
C. L. Ferrell ◽  
J. H. Eisemann ◽  
R. A. Britton ◽  
J. A. Nienaber

The objective of the present study was to measure changes in splanchnic blood flow and oxygen consumption in sheep fed on a high-concentrate diet ad lib. (ADLIB) or an amount sufficient to maintain body-weight (MAINT) for 21 d. Eleven ram lambs were surgically implanted with chronic indwelling catheters in the portal, hepatic and mesenteric veins and mesenteric artery to measure blood flow and net O2 flux through the liver and portal-drained viscera (PDV). During the 21 d period, PDV (P < 0.05) and liver (P < 0.01) blood flow increased in ADLIB and decreased in MAINT lambs (treatment x day, linear). After 21 d, O2 consumptions in PDV and liver of MAINT lambs were 37 and 63% lower than in ADLIB lambs. In the control period, total splanchnic tissues represented an average of 52% of whole body O2 consumption. After 21 d, the relative contributions of PDV and liver to whole-body O2 consumption were 28 and 41% in ADLIB and 19 and 22% in MAINT lambs respectively. Allometric regression variables indicate that liver O2 consumption responds more rapidly to changes in metabolizable energy intake than portal O2 consumption. These results indicate that blood flow and O2 consumption in both PDV and liver are related to level of nutrition. Furthermore, splanchnic tissues represent a significant component of whole-body O2 consumption that is subject to manipulation by level of nutrition.

1993 ◽  
Vol 264 (4) ◽  
pp. E504-E513 ◽  
Author(s):  
T. Brundin ◽  
J. Wahren

The contribution of the splanchnic tissues to the initial 2-h rise in whole body energy expenditure after ingestion of glucose or fructose was examined in healthy subjects. Indirect calorimetry and catheter techniques were employed to determine pulmonary gas exchange, cardiac output, splanchnic blood flow, splanchnic oxygen uptake, and blood temperatures before and for 2 h after ingestion of 75 g of either fructose or glucose in water solution or of water only. Fructose ingestion was found to increase total oxygen uptake by an average of 9.5% above basal levels; the corresponding increase for glucose was 8.8% and for water only 2.5%. The respiratory exchange ratio increased from 0.84 in the basal state to 0.97 at 45 min after fructose ingestion and rose gradually after glucose to 0.86 after 120 min. The average 2-h thermic effect, expressed as percent of ingested energy, was 5.0% for fructose and 3.7% for glucose (not significant). Splanchnic oxygen consumption did not increase measurably after ingestion of either fructose or glucose. The arterial concentration of lactate rose, arterial pH fell, and PCO2 remained essentially unchanged after fructose ingestion. Glucose, but not fructose, elicited increases in cardiac output (28%) and splanchnic blood flow (56%). Fructose, but not glucose, increased arterial blood temperature significantly. It is concluded that both fructose and glucose-induced thermogenesis occurs exclusively in extrasplanchnic tissues. Compared with glucose, fructose ingestion is accompanied by a more marked rise in CO2 production, possibly reflecting an increased extrasplanchnic oxidation of lactate and an accumulation of heat in the body.


1997 ◽  
Vol 77 (2) ◽  
pp. 307-316 ◽  
Author(s):  
J. O. O. Miaron ◽  
R. J. Christopherson

Propranolol, a nonselective β-blocker and selective β-blockers (metoprolol a β1-blocker and ICI 118551 a β2-blocker) were used to investigate the β-adrenoceptor-mediated adrenaline-induced increase in whole-body and organ VO2 in five whether sheep. Transit time blood flow probes were chronically implanted on the portal vein and the external iliac artery and sampling catheters were placed in the mesenteric artery, iliac vein and portal vein. Oxygen consumption by the whole body was measured by open circuit calorimetry, and oxygen consumption by the portal-drained viscera and the hindquarter was determined from A-VO2 differences and organ blood flow. Absolute pre-infusion VO2 values for the whole body, portal-drained viscera and hindquarters were 236 ± 7.4, 61 ± 6.0 and 13 ± 3.1 mL min−1 respectively. The mean changes in VO2 in response to infusion were 74 vs. 11, 26, 10 and 12 mL min−1 (SE = 9.1) for whole body; 31 vs. −2, −15, 13 and −4 mL min−1 (SE = 7.3) for portal-drained viscera and 8 vs. −0.4, 2.1, 1.0 and −2.7 mL min−1; SE = 4.3) for hindquarters during adrenaline, control, propranolol, metoprolol and ICI 118551 treatments, respectively. Adrenaline increased VO2 (P < 0.05) in the whole body and portal-drained viscera, but not hindquarters relative to controls. All β-blockers suppressed (P < 0.05) the adrenaline-induced increase in VO2 except for the portal-drained viscera where metoprolol was less effective and the hindquarters where β-blockers had no effect. The blood flow pattern was similar to VO2 responses for the portal-drained viscera. The nonselective β1 and β2 blockers were effective in reducing the adrenaline-induced increases in blood flow from the portal-drained viscera and to the hindquarters, with more pronounced β-adrenoceptor-mediated haemodynamic effects. The results indicate that the β-adrenoceptor system modulates whole body VO2, clearly establishes that adrenaline induces an increased VO2 in portal-drained viscera which can be reversed by a β2 or nonselective β blocker and implicates β adrenoceptors as an influencing factor in the maintenance energy requirements of ruminants. Key words: Calorimetry, adrenaline, β blockers, blood flow, sheep


1977 ◽  
Vol 43 (2) ◽  
pp. 204-210 ◽  
Author(s):  
A. Capderou ◽  
J. Polianski ◽  
J. Mensch-Dechene ◽  
L. Drouet ◽  
G. Antezana ◽  
...  

An impairment of gluconeogenesis has been proposed to explain the low arterial blood glucose of highlanders. Therefore, we studied splanchnic blood flow, splanchnic uptake of oxygen and lactate, and output of glucose in nine normal and six anemic highlanders at an altitude of 3,750 m. Splanchnic blood flow, arteriovenous difference for oxygen, and oxygen consumption were comparable at rest in both groups and in lowlanders from the literature, whereas splanchnic output of glucose, and uptake of lactate were approximately twice those in lowlanders. After 10 min of mild exercise in 12 subjects (7 normals, 5 anemic), no significant changes in splanchnic hemodynamics and metabolism were found. During 29% oxygen breathing in 8 subjects (5 normals, 3 anemics), arterial lactate, splanchnic uptake of lactate and output of glucose fell to normal sea-level values. We concluded that splanchnic hemodynamics are similar in adapted highlanders and in lowlanders, and that there is no evidence of an impaired gluconeogenesis at the altitude of the present study.


1989 ◽  
Vol 67 (9) ◽  
pp. 994-998 ◽  
Author(s):  
Peter J. H. Jones

The comparative effects of feeding diets containing corn, olive, coconut, or menhaden fish oil on efficiency of energy deposition and on short term energy expenditure were examined in growing hamsters. Diets comprising oils mixed with laboratory diets at 10% oil w/w were fed ad libitum for 3 weeks. Animals fed laboratory diets were used as controls. Body composition was determined before and after the feeding period using 3H2O distribution space. Oxygen consumption was measured in each animal during the final week. Weight gains of groups fed corn and olive oil diets exceeded those of the group fed laboratory diet alone (p < 0.05), although metabolizable energy intakes were similar across groups. Corn oil fed animals demonstrated higher carcass energy gains as fat compared with laboratory diet fed or menhaden oil fed groups. This was reflected in an increased fractional deposition of metabolizable energy intake in the group fed corn oil diet compared with the latter two groups. Fecal energy losses were lower in the group fed corn oil diet, and higher in the group fed laboratory diet alone, compared with other groups. Oxygen consumption did not differ between groups. These findings indicate that feeding dietary fish oil, compared with corn oil, favours energy substrate oxidation reducing the fraction of metabolizable energy partitioned for storage.Key words: energy balance, energy expenditure, dietary fatty acids, hamster.


1959 ◽  
Vol 197 (3) ◽  
pp. 624-626 ◽  
Author(s):  
Ann Evringham ◽  
Edith M. Brenneman ◽  
Steven M. Horvath

Eleven mongrel dogs were trained to lie quietly while splanchnic blood flows and splanchnic metabolisms were determined. They were then anesthetized by means of intravenous injection of 28.4 mg/kg of sodium pentobarbital and studies of the hepatic circulation continued for an additional 70 minutes. Only minor, transitory alterations were observed in the parameters being measured. It was concluded that with this particular anesthetic agent splanchnic blood flows and oxygen consumption were essentially at control unanesthetized levels within 30–45 minutes postanesthesia.


1994 ◽  
Vol 266 (6) ◽  
pp. E877-E884 ◽  
Author(s):  
A. V. Kurpad ◽  
K. Khan ◽  
A. G. Calder ◽  
M. Elia

The effect of an infusion of norepinephrine (0.42 nmol.kg-1.min-1) on energy metabolism in the whole body (using indirect calorimetry and the arteriovenous forearm catheterization techniques in eight healthy young male adults. The activity of the triglyceride-fatty acid cycle, which mainly operates in nonmuscular tissues, was also assessed by measuring glycerol turnover using [2H5]glycerol (to indicate lipolysis) and indirect calorimetry (to indicate net fat oxidation). Norepinephrine increased whole body oxygen consumption by almost 10% (P < 0.01), but the estimated oxygen consumption of muscles tended to decrease. Muscle blood flow (measured by 133Xe) and forearm blood flow (measured by strain-gauge plethysmography) were not significantly affected by norepinephrine, but the rate of uptake of nonesterified fatty acids and beta-hydroxybutyrate increased severalfold (P < 0.05), whereas that of glucose did not. The activity of the triglyceride-fatty acid cycle increased fourfold after norepinephrine administration, having a marginal effect on resting energy expenditure (approximately 1.5%) but accounting for approximately 15% of the increase in whole body energy expenditure. This study provides no evidence that skeletal muscle is an important site for norepinephrine-induced thermogenesis and suggests that an increase in the activity of the triglyceride-fatty acid cycle contributes to the norepinephrine-induced increase in energy expenditure of nonmuscular tissues.


1994 ◽  
Vol 267 (5) ◽  
pp. E648-E655 ◽  
Author(s):  
T. Brundin ◽  
J. Wahren

The renal contribution to the amino acid-induced whole body thermogenesis was examined. Using indirect calorimetry and catheter techniques, pulmonary and renal oxygen uptake and blood flow, blood temperatures, and net renal exchange of amino acids, glucose and lactate were measured in eight healthy men before and during 3 h of intravenous infusion of 720 kJ of an amino acid solution. During the infusion, the pulmonary oxygen uptake increased from 252 +/- 12 to 310 +/- 8 ml/min, cardiac output increased from 5.9 +/- 0.3 to 6.8 +/- 0.3 l/min, and the arterial blood temperature increased from 36.34 +/- 0.04 to 36.68 +/- 0.07 degrees C. Renal oxygen consumption, heat production, blood flow, and net glucose exchange remained unchanged during the infusion. The net renal uptake of amino acid energy from the blood rose from 2 +/- 2 to 11 +/- 4 W. The total renal energy expenditure was 9-10 W throughout the study period. It is concluded that intravenous amino acid infusion greatly augments the uptake and utilization of amino acids in the kidneys but does not stimulate the renal oxygen consumption, heat production, blood flow, or glucose release.


1953 ◽  
Vol 32 (9) ◽  
pp. 793-800 ◽  
Author(s):  
T. B. Reynolds ◽  
A. Paton ◽  
M. Freeman ◽  
F. Howard ◽  
Sheila Sherlock

Sign in / Sign up

Export Citation Format

Share Document