Effect of fatty acid composition of dietary fat on energy balance and expenditure in hamsters

1989 ◽  
Vol 67 (9) ◽  
pp. 994-998 ◽  
Author(s):  
Peter J. H. Jones

The comparative effects of feeding diets containing corn, olive, coconut, or menhaden fish oil on efficiency of energy deposition and on short term energy expenditure were examined in growing hamsters. Diets comprising oils mixed with laboratory diets at 10% oil w/w were fed ad libitum for 3 weeks. Animals fed laboratory diets were used as controls. Body composition was determined before and after the feeding period using 3H2O distribution space. Oxygen consumption was measured in each animal during the final week. Weight gains of groups fed corn and olive oil diets exceeded those of the group fed laboratory diet alone (p < 0.05), although metabolizable energy intakes were similar across groups. Corn oil fed animals demonstrated higher carcass energy gains as fat compared with laboratory diet fed or menhaden oil fed groups. This was reflected in an increased fractional deposition of metabolizable energy intake in the group fed corn oil diet compared with the latter two groups. Fecal energy losses were lower in the group fed corn oil diet, and higher in the group fed laboratory diet alone, compared with other groups. Oxygen consumption did not differ between groups. These findings indicate that feeding dietary fish oil, compared with corn oil, favours energy substrate oxidation reducing the fraction of metabolizable energy partitioned for storage.Key words: energy balance, energy expenditure, dietary fatty acids, hamster.

1986 ◽  
Vol 60 (3) ◽  
pp. 1054-1059 ◽  
Author(s):  
D. Richard ◽  
J. Arnold ◽  
J. Leblanc

The present study was carried out to investigate the effects of exercise training on energy balance in male rats acclimated at two different environmental temperatures. Sedimentary and exercised rats were housed and trained at either 24 or 4 degrees C, with the training program consisting of running on a motor-driven treadmill within their respective environments. After 45 days, energy, protein, and fat contents of rats were determined together with the energy content of food and feces. The results show that metabolizable energy intake was reduced by 10% in exercise-trained groups. Substantial differences in energy gains were observed between sedentary and trained rats; sedentary rats showed almost three times more energy gain than trained rats. Carcass analysis revealed the energy gain differences to be mainly due to varied amounts of fat deposition. Energy expenditure (kJ) excluding the cost of exercise training was corrected for metabolic body size (BW 0.75), which in turn showed no significant differences between trained rats and their respective sedentary controls. The present results suggested that exercise training in rats leads to neither increase nor decrease in energy expenditure through components additional to physical activity. The present results also indicated that brown adipose tissue thermogenesis, as assessed through mitochondrial guanosine 5′-diphosphate binding, was not significantly modified by exercise training, regardless of the temperature at which the rats were housed and trained.


1997 ◽  
Vol 77 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Susanna Iossa ◽  
Maria P. Mollica ◽  
Lillà Lionetti ◽  
Antonio Barletta ◽  
Giovanna Liverini

In the present study energy balance and liver respiratory activity were studied in rats fed on either a control diet or an energy-dense diet. Liver respiration was assessed both without added substrates and after the addition of hexanoate, glycerol, or sorbitol. The effect of ouabain on hexanoate-supported respiration was also determined. Metabolizable energy intake and energy expenditure increased in rats fed on an energy dense diet, but body-weight gain, as well as lipid and protein content, remained unchanged. When net energy expenditure, obtained excluding the total cost of storage, was expressed as a percentage of metabolizable energy, significant differences were found between the two groups of rats. This finding supports the presence of regulatory mechanisms in rats fed on an energy-dense diet, which are useful to counteract development of obesity. In addition, a significant increase in liver respiratory activity was found in rats fed on an energy-dense diet, both in the basal state and in that stimulated by added substrates. Na/K-pump-dependent O2 consumption also increased in rats fed on an energy-dense diet. The results indicate that a greater production of metabolic heat by the liver can contribute to the increased energy expenditure found in rats fed on an energy-dense diet.


2019 ◽  
Vol 44 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Matthew M. Schubert ◽  
Elyse A. Palumbo

CrossFit (CF; CrossFit Inc., Washington, DC, USA) is a form of high-intensity functional training that focuses on training across the entire spectrum of physical fitness. CF has been shown to improve a number of indicators of health but little information assessing energy balance exists. The purpose of the present study was to investigate energy balance during 1 week of CF training. Men and women (n = 21; mean ± SD; age, 43.5 ± 8.4 years; body mass index, 27.8 ± 4.9 kg·m−2), with ≥3 months CF experience, had body composition assessed via air displacement plethysmography before and after 1 week of CF training. Participants wore ActiHeart monitors to assess total energy expenditure (TEE), activity energy expenditure, and CF energy expenditure (CF EE). Energy intake was assessed from TEE and Δ body composition. CF EE averaged 605 ± 219 kcal per 72 ± 10 min session. Weekly CF EE was 2723 ± 986 kcal. Participants were in an energy deficit (TEE: 3674 ± 855 kcal·day−1; energy intake: 3167 ± 1401 kcal·day−1). Results of the present study indicate that CF training can account for a significant portion of daily activity energy expenditure. The weekly expenditure is within levels shown to induce clinically meaningful weight loss in overweight/obese populations.


1989 ◽  
Vol 61 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Christopher J. H. Woodward ◽  
Peter W. Emery

1. Sprague–Dawley rats were injected for 16 d with long-acting insulin, and energy balance was calculated using the comparative carcass technique. Two experiments were carried out with females (starting weights 150 and 90 g respectively), and one with males (starting weight 150 g). In a fourth experiment, cytochrome c oxidasc (EC 1.9.3.1) activity was measured as an indicator of the capacity for substrate oxidation.2. Insulin increased weight gain by up to 57% (P < 0.01 for all studies). Metabolizable energy intake (kJ/d) was also consistently higher in the treated groups, by up to 34% (P < 0.01 for all studies). The excess weight gained by the insulin-treated rats was predominantly due to fat deposition.3. Energy expenditure, calculated as the difference between metabolizable intake and carcass energy gain. was expressed on a whole-body basis, or relative to either metabolic body size (kg body-weight0.75) or fat-free mass. Insulin consistently raised energy expenditure, regardless of the method of expression, but this change reached statistical significance in only two of the nine comparisons.4. Cytochrome c oxidase activity was not affected by insulin treatment in either interscapular brown adipose tissue or gastrocnemius muscle. In liver, total enzyme activity (U/tissue) was increased from 2928 (se 162) in the controls to 3940 (se 294) in the treated group (P < 0.02), but specific activity (U/mg protein) was unchanged.5. It is concluded that, despite causing substantial hyperphagia, insulin treatment only slightly increases energy expenditure in rats. The costs of increased tissue deposition may account for this change.


1989 ◽  
Vol 62 (1) ◽  
pp. 23-34 ◽  
Author(s):  
D. G. Burrin ◽  
C. L. Ferrell ◽  
J. H. Eisemann ◽  
R. A. Britton ◽  
J. A. Nienaber

The objective of the present study was to measure changes in splanchnic blood flow and oxygen consumption in sheep fed on a high-concentrate diet ad lib. (ADLIB) or an amount sufficient to maintain body-weight (MAINT) for 21 d. Eleven ram lambs were surgically implanted with chronic indwelling catheters in the portal, hepatic and mesenteric veins and mesenteric artery to measure blood flow and net O2 flux through the liver and portal-drained viscera (PDV). During the 21 d period, PDV (P < 0.05) and liver (P < 0.01) blood flow increased in ADLIB and decreased in MAINT lambs (treatment x day, linear). After 21 d, O2 consumptions in PDV and liver of MAINT lambs were 37 and 63% lower than in ADLIB lambs. In the control period, total splanchnic tissues represented an average of 52% of whole body O2 consumption. After 21 d, the relative contributions of PDV and liver to whole-body O2 consumption were 28 and 41% in ADLIB and 19 and 22% in MAINT lambs respectively. Allometric regression variables indicate that liver O2 consumption responds more rapidly to changes in metabolizable energy intake than portal O2 consumption. These results indicate that blood flow and O2 consumption in both PDV and liver are related to level of nutrition. Furthermore, splanchnic tissues represent a significant component of whole-body O2 consumption that is subject to manipulation by level of nutrition.


2000 ◽  
Vol 279 (1) ◽  
pp. E33-E43 ◽  
Author(s):  
Kevin D. Laugero ◽  
Gary P. Moberg

There is a cost of stress that may result in the loss of normal biological function (e.g., growth). Repeated, and even single, applications of stressors have been shown to induce negative energy balance in rodents. However, here we addressed whether this energetic response changes during multiple stress exposure and whether there is complete recovery subsequent to the cessation of stress exposure. These questions were addressed in growing C57Bl/6 mice (31 day) by determining at different times the energetic and endocrine responses after the exposure to restraint (R) stress for 4 h applied once (R1), repeatedly over 3 days (R3), or repeatedly over 7 days (R7). Compared with control values, R elevated ( P < 0.05) plasma corticosterone and reduced plasma insulin-like growth factor I on all days of exposure to the stressor. Seven days, but not 1 or 3 days of R, decreased the net growth (126%, P < 0.05) and deposition of fat (71%, P < 0.05) and lean (60%, P < 0.05) energy over the 7 days. Only R7 depressed the 7-day metabolizable energy intake ( P < 0.05), and R7, but not R1 or R3, increased the overall energy expenditure (10%, P < 0.05). Our results demonstrate that repeated episodes of stress are energetically costly to the rapidly growing animal, but compensatory mechanisms mitigate this cost of repeated stress exposure and permit complete recovery of energy balance after the cessation of stress application.


1987 ◽  
Vol 252 (3) ◽  
pp. R617-R623 ◽  
Author(s):  
J. Arnold ◽  
D. Richard

Thermogenic response to ingestion of high-fat diet was investigated in four groups of male rats, two groups being exercise trained and two remaining sedentary. One sedentary and one trained group each received a high-fat dietary supplement in addition to the stock diet. After 35 days, body energy and protein and fat contents were determined. Results indicate that exercise reduced metabolizable energy (ME) intake by 9 and 18% in stock- and high-fat-fed trained rats, respectively. Compared with stock-fed rats, ME intake was elevated 31 and 18% in sedentary and trained high-fat-fed rats, respectively. Exercise also affected energy gains; trained rats deposited almost 60% less energy than controls. Exercise largely decreased both fat and protein contents of rats, whereas the high-fat supplement enhanced fat deposition. Energy expenditure, excluding exercise cost, was calculated on a mass-independent basis and was revealed to be similar in appropriately matched (diet) trained and sedentary rats. High-fat feeding induced increases in expenditure assumed to be due to enhanced brown adipose tissue (BAT) regulatory diet-induced thermogenesis. Conversely, exercise did not affect further the regulatory thermogenic response of BAT to stimuli originating from high-fat diet. Excluding physical activity, energy expenditure components in sum (expressed mass independently), in high-fat- and stock-fed rats, appear unaltered by exercise training.


1984 ◽  
Vol 62 (2) ◽  
pp. 235-240 ◽  
Author(s):  
A. G. Dulloo ◽  
D. S. Miller

The effects of sham, bilateral surgical denervation or excision of interscapular brown adipose tissue on body composition and energetic efficiency were studied in young CFLP mice kept at 25 °C and fed a laboratory stock diet. A preliminary experiment showed that 15 weeks following surgery, total body fat was increased by 42% in the denervated group and by 72% in the excised group while body protein was unchanged. In another 7-week energy balance experiment, body fat was also significantly higher by 15 and 18% in the denervated and excised group, respectively, but metabolizable energy intake was slightly lower than that of sham controls. Determination of energy expenditure both by the comparative carcass slaughter technique and by measurement of daily oxygen consumption showed that the metabolic rate was reduced in the denervated and excised groups. The capacity for thermogenesis, as measured by an increase in oxygen consumption following injections of noradrenaline (600 μg/kg body weight) was similar in all groups. These studies show that denervation or excision of interscapular brown adipose tissue causes an elevation in energetic efficiency, and indicates an important role of the sympathetic nervous system in the regulation of animal heat production by brown adipose tissue and in the overall control of thermogenesis.


1996 ◽  
Vol 74 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Katherine L. Parker ◽  
Michael P. Gillingham ◽  
Thomas A. Hanley ◽  
Charles T. Robbins

Foraging efficiency (metabolizable energy intake/energy expenditure when foraging) was determined over a 2-year period in nine free-ranging Sitka black-tailed deer (Odocoileus hemionus sitkensis) in Alaska, and related to foraging-bout duration, distances travelled, and average speeds of travel. We calculated the energy-intake component from seasonal dry matter and energy content, dry matter digestibility, and a metabolizable energy coefficient for each plant species ingested. We estimated energy expenditures when foraging as the sum of energy costs of standing, horizontal and vertical locomotion, sinking depths in snow, and supplementary expenditures associated with temperatures outside thermoneutrality. Energy intake per minute averaged 4.0 times more in summer than winter; energy expenditure was 1.2 times greater in summer. Animals obtained higher amounts of metabolizable energy with higher amounts of energy invested. Energy intake during foraging bouts in summer was 2.5 times the energy invested; in contrast, energy intake during winter was only 0.7 times the energy expended. Changes in body mass of deer throughout the year increased asymptotically with foraging efficiency, driven primarily by the rate of metabolizable energy intake. Within a season, summer intake rates and winter rates of energy expediture had the greatest effects on the relation between foraging efficiency and mass status. Seasonal changes in foraging efficiency result in seasonal cycles in body mass and condition in black-tailed deer. Body reserves accumulated during summer, however, are essential for over-winter survival of north-temperate ungulates because energy demands cannot be met by foraging alone.


1994 ◽  
Vol 74 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Z. Jiang ◽  
R. J. Hudson

Seasonal energy intakes of 6- to 14-mo-old wapiti hinds were determined in energy balance trials under pen and field conditions in winter, spring and summer. Six animals grazed native pastures supplemented with alfalfa hay when pasture availability declined in winter. Another six were penned and fed alfalfa-barley pellets to maximize growth throughout the year. Season and diet-specific metabolizable energy requirements for maintenance and liveweight gain were determined from regression of metabolizable energy intake on gain. Daily maintenance requirements of penned wapiti ranged from (mean ± SE) 473 ± 35 kJ kg−0.75 in winter to 728 ± 78 kJ kg−0.75 in summer. On spring and summer pasture, daily ecological maintenance requirements ranged from 900 ± 26 to 984 ± 37 kJ kg−0.75. Energy requirements for gain were the same in pen and field trials, ranging from 25 ± 6 to 33 ± 5 kJ g−1 in winter and from 40 ± 6 to 43 ± 12 kJ g−1 in spring and summer. This study provides basic information on the metabolizable energy needs of wapiti and insights into how their seasonal requirements can be optimally met. Key words: Elk, metabolizable energy requirement, growth, physiological maintenance, ecological maintenance, seasonality, energy balance


Sign in / Sign up

Export Citation Format

Share Document