scholarly journals Balanites aegyptiaca (simple-thorned torchwood).

Author(s):  
Julissa Rojas-Sandoval

Abstract B. aegyptiaca is one of the most important tree species for African people because it provides food, medicinal products and fuel-wood valued for subsistence living in arid and semiarid areas (PROTA, 2016). This species is well adapted to grow in a wide range of habitats, soil types (from fine sands to heavy clay) and climatic moisture levels (Janick and Paull, 2008; Orwa et al., 2009). This thorny, long-lived tree has been introduced into cultivation in the Cape Verde islands, the Azores, India, Curacao, Bonaire, the Dominican Republic and Puerto Rico (Booth and Wickens, 1988; Chothani and Vaghasiya, 2011; Burg et al., 2012; Govaerts, 2016). Currently it has been listed as invasive only in Curacao (Burg et al., 2012). On this island it is spreading primarily across ruderal areas. B. aegyptiaca is also listed as a weed in Palestine and in Sudan where it grows forming dense thorny thickets (Zohary, 1973; Miehe, 1986).

2019 ◽  
Author(s):  
Concha Cano-Díaz ◽  
Fernando T. Maestre ◽  
David J. Eldridge ◽  
Brajesh K. Singh ◽  
Richard D. Bardgett ◽  
...  

AbstractCyanobacteria are key organisms in the evolution of life on Earth, but their distribution and environmental preferences in terrestrial ecosystems remain poorly understood. This lack of knowledge is particularly evident for two recently discovered non-photosynthetic cyanobacterial classes, Melainabacteria and Sericytochromatia, limiting our capacity to predict how these organisms and the important ecosystem functions they perform will respond to ongoing global change. Here, we conducted a global field survey covering a wide range of vegetation types and climatic conditions to identify the environmental factors associated with the distribution of soil cyanobacterial communities. Network analyses revealed three major clusters of cyanobacterial phylotypes, each one dominated by members of one of the extant classes of Cyanobacteria (Oxyphotobacteria, Melainabacteria and Sericytochromatia), suggesting that species within these taxonomic groups share similar environmental preferences. Melainabacteria appear mostly in acidic and humid ecosystems, especially forests, Oxyphotobacteria are prevalent in arid and semiarid areas, and Sericytochromatia are common in hyperarid oligotrophic environments. We used this information to construct a global atlas of soil cyanobacteria. Our results provide novel insights into the ecology and biogeography of soil cyanobacteria and highlight how their global distribution could change in response to increased aridity, a landmark feature of climate change in terrestrial ecosystems worldwide.Significance statementCyanobacteria have shaped the history of life on Earth and can be important photosynthesizers and nitrogen fixers in terrestrial ecosystems worldwide. The recent discovery of two non-photosynthetic classes has advanced our understanding of their evolution, but their distribution and environmental preferences remain poorly described. Using a global survey conducted across 237 locations on six continents, we identified three main groups of soil cyanobacteria with contrasting environmental preferences: acidic and humid ecosystems, arid and semiarid areas, and hyperarid oligotrophic ecosystems. We then constructed the first global atlas of soil cyanobacteria, an important advance in our understanding of the ecology and biogeography of these functionally important organisms.


Author(s):  
Yuanyuan Wang ◽  
Fanhao Meng ◽  
Min Luo

Abstract Growing water shortages have been a systemic risk around the world, especially in arid and semi-arid areas, with seriously threatening global food security and human well-being. Reasonable and accurate evaluations of the water shortages of cultivated lands provide scientific reference for irrigation strategies. In this study, to better understand the distribution and cause of water scarcity for the arid and semiarid areas, we used the arable land water scarcity index (AWSI), based on water footprint theory to accurately estimate the temporal and spatial patterns of the AWSI of Inner Mongolia in China over 1999–2018, and further reveal the key factors influencing the AWSI distribution. The AWSI distribution pattern of Inner Mongolia was high in southwest and low in northeast, with an average value of 0.63 and suffering from high water stress for a long time. The AWSI presented an increasing trend in 1999–2018, with slow in west (change rate2%) and fast in east (2%). The main factors that significantly affected the AWSI were precipitation, relative humidity, and agricultural planting area. This study can provide scientific reference for the formulation of agricultural water management and sustainable use strategies in arid and semiarid areas.


Author(s):  
Aiai Xu ◽  
Jie Liu ◽  
Zhiying Guo ◽  
Changkun Wang ◽  
Kai Pan ◽  
...  

It is critical to identify the assembly processes and determinants of soil microbial communities to better predict soil microbial responses to environmental change in arid and semiarid areas. Here, soils from 16 grassland-only, 9 paired grassland and farmland, and 16 farmland-only sites were collected across the central Inner Mongolia Plateau covering a steep environmental gradient. Through analyzing the paired samples, we discovered that land uses had strong effects on soil microbial communities, but weak effects on their assembly processes. For all samples, although no environmental variables were significantly correlated with the net relatedness index (NRI), both the nearest taxon index (NTI) and the β-nearest taxon index (βNTI) were most related to mean annual precipitation (MAP). With the increase of MAP, soil microbial taxa at the tips of the phylogenetic tree were more clustered, and the contribution of determinism increased. Determinism (48.6%), especially variable selection (46.3%), and stochasticity (51.4%) were almost equal in farmland, while stochasticity (75.0%) was dominant in grassland. Additionally, Mantel tests and redundancy analyses (RDA) revealed that the main determinants of soil microbial community structure were MAP in grassland, but mean annual temperature (MAT) in farmland. MAP and MAT were also good predictors of the community composition (the top 200 dominant OTUs) in grassland and farmland, respectively. Collectively, in arid and semiarid areas, soil microbial communities were more sensitive to environmental change in farmland than in grassland, and unlike the major impact of MAP on grassland microbial communities, MAT was the primary driver of farmland microbial communities. Importance As one of the most diverse organisms, soil microbes play indispensable roles in many ecological processes in arid and semiarid areas with limited macrofaunal and plant diversity, yet the mechanisms underpinning soil microbial community are not fully understood. In this study, soil microbial communities were investigated along a 500 km transect covering a steep environmental gradient across farmland and grassland in the areas. The results showed that precipitation was the main factor mediating the assembly processes. Determinism was more influential in farmland, and variable selection of farmland was twice that of grassland. Temperature mainly drove farmland microbial communities, while precipitation mainly affected grassland microbial communities. These findings provide new information about the assembly processes and determinants of soil microbial communities in arid and semiarid areas, consequently improving the predictability of the community dynamics, which have implications for sustaining soil microbial diversity and ecosystem functioning, particularly under global climate change conditions.


Forages ◽  
2020 ◽  
pp. 313-330
Author(s):  
Daren D. Redfearn ◽  
Keith R. Harmoney ◽  
Alexander J. Smart

2019 ◽  
Vol 98 ◽  
pp. 12007
Author(s):  
Tianming Huang ◽  
Baoqiang Ma ◽  
Yin Long ◽  
Zhonghe Pang

In arid and semiarid area, the recharge rate is relatively limited and the unsaturated zone (UZ) is commonly thick. The moisture in the UZ may represent the water infiltrating from precipitation during the past decades to thousands of years. Therefore, the multiple geochemical tracers in soil moisture, including Cl (chloride mass balance), 3H (tritium peak displacement), NO3, 2H, 18O, can be used to estimate diffuse recharge rate and related recharge characteristics. Based on 45 UZ profiles with maximum depth of 62 m in the Ordos Basin in NW China, a typical arid and semiarid area, we has used multiple geochemical tracers to study the following recharge informations: (1) reconstruction of groundwater recharge history, (2) determination of groundwater recharge mechanism, and (3) assessment of impact of vegetation changes on groundwater recharge. The results show that the soil texture (epically the shallow soil), vegetation and precipitation mainly control the recharge rate. This study also found that shallow groundwater in arid and semiarid areas is often not in equilibrium with near-surface boundary conditions. To estimate present recharge information, the UZ must be considered. The whole recharge process from precipitation to groundwater cannot be well understood unless the UZ have been included in arid and semiarid areas.


2017 ◽  
Vol 30 (18) ◽  
pp. 7451-7463 ◽  
Author(s):  
Shuyun Zhao ◽  
Hua Zhang ◽  
Zhili Wang ◽  
Xianwen Jing

Abstract The comprehensive effects of anthropogenic aerosols (sulfate, black carbon, and organic carbon) on terrestrial aridity were simulated using an aerosol–climate coupled model system. The results showed that the increase in total anthropogenic aerosols in the atmosphere from 1850 to 2010 had caused global land annual mean precipitation to decrease by about 0.19 (0.18, 0.21) mm day−1, where the uncertainty range of the change (minimum, maximum) is given in parentheses following the mean change, and reference evapotranspiration ET0 (representing evapotranspiration ability) to decrease by about 0.33 (0.31, 0.35) mm day−1. The increase in anthropogenic aerosols in the atmosphere from 1850 to 2010 had caused land annual mean terrestrial aridity to decrease by about 3.0% (2.7%, 3.6%). The areal extent of global total arid and semiarid areas had reduced due to the increase in total anthropogenic aerosols in the atmosphere from preindustrial times. However, it was found that the increase in anthropogenic aerosols in the atmosphere had enhanced the terrestrial aridity and thus resulted in an expansion of arid and semiarid areas over East and South Asia. The projected decrease in anthropogenic aerosols in the atmosphere from 2010 to 2100 will increase global land annual mean precipitation by about 0.15 (0.13, 0.16) mm day−1 and ET0 by about 0.26 (0.25, 0.28) mm day−1, thereby producing a net increase in terrestrial aridity of about 2.8% (2.1%, 3.6%) and an expansion of global total arid and semiarid areas.


Sign in / Sign up

Export Citation Format

Share Document