Serological responses to Ascaris suum adult worm antigens in Iberian finisher pigs

2003 ◽  
Vol 77 (2) ◽  
pp. 167-172 ◽  
Author(s):  
E. Frontera ◽  
F. Serrano ◽  
D. Reina ◽  
M. Alcaide ◽  
J. Sánchez-López ◽  
...  

AbstractAdult Ascaris suum were dissected to obtain different worm components (body wall, body fluid, ovaries, uterus and oesophagus) which were used as antigens when testing 95 sera of naturally A. suum-infected Iberian pigs by enzyme-linked immunosorbent assay (ELISA) and Western blot (WB). Pigs with patent Ascaris infections had significantly lower ELISA optical density values than pigs without adult worms when using the body fluid and the body wall as antigens. A poor negative correlation was found between adult intestinal worm burden or eggs in faeces and specific antibody responses, measured by ELISA and WB using all antigens. By WB, the recognition of specific bands was variable, but three groups of bands with molecular weights of 97 kDa, 54–58 kDa and 42–44 kDa were generally recognized by sera from naturally infected pigs as well as from hyperimmunized pigs when using the five antigen extracts. The ELISA and WB techniques may be used for immunodiagnosis, using somatic adult worm antigens, to declare young pigs to be Ascaris-free but cannot be used for individual Ascaris-diagnosis in adult Iberian pigs.

1954 ◽  
Vol s3-95 (30) ◽  
pp. 251-270
Author(s):  
G. P. WELLS

The mechanism of proboscis movement is analysed in detail in Arenicola marina L. and A. ecaudata Johnston, and discussed in relation to the properties of the hydrostatic skeleton. Proboscis activity is based on the following cycle of movements in both species. Stage I. The circular muscles of the body-wall and buccal mass contract; the head narrows and lengthens. Stage IIa. The circular muscles of the mouth and buccal mass relax; the gular membrane (or ‘first diaphragm’ of previous authors) contracts; the mouth opens and the buccal mass emerges. Stage IIb. The longitudinal muscles of the buccal mass and body-wall contract; the head shortens and widens and the pharynx emerges. Stage III. As Stage I. The two species differ anatomically and in their hydrostatic relationships. In ecaudata, the forward movement of body-fluid which extrudes and distends the proboscis is largely due to the contraction of the gular membrane and septal pouches. In marina, the essential mechanism is the relaxation of the oral region which allows the general coelomic pressure to extrude the proboscis. The gular membrane of marina contracts as that of ecaudata does, but its anatomy is different and it appears to be a degenerating structure as far as proboscis extrusion is concerned. Withdrawal of the proboscis may occur while the head is still shortening and widening in Stage IIb, or while it is lengthening and narrowing in Stage III. The proboscis is used both in feeding and in burrowing; in the latter case nothing enters through the mouth; the difference is largely caused by variation in the timing of withdrawal relative to the 3-stage cycle.


Parasitology ◽  
2003 ◽  
Vol 126 (1) ◽  
pp. 79-86 ◽  
Author(s):  
J. WILLSON ◽  
K. AMLIWALA ◽  
A. HARDER ◽  
L. HOLDEN-DYE ◽  
R. J. WALKER

Here we report on the action of the novel cyclo-depsipeptide anthelmintic, emodepside, on the body wall muscle of the parasitic nematode, Ascaris suum. Emodepside caused (i) muscle relaxation, (ii) inhibition of muscle contraction elicited by either acetylcholine (ACh), or the neuropeptide, AF2 (KHEYLRFamide) and (iii) a rapid relaxation of muscle tonically contracted by ACh. The inhibitory action of emodepside on the response to ACh was not observed in a denervated muscle strip, indicating that it may exert this action through the nerve cord, and not directly on the muscle. Electrophysiological recordings showed emodepside elicited a Ca++-dependent hyperpolarization of muscle cells. Furthermore, the response to emodepside was dependent on extracellular K+, similar to the action of the inhibitory neuropeptides PF1 and PF2 (SDPNFLRFamide and SADPNFLRFamide). Thus emodepside may act at the neuromuscular junction to stimulate release of an inhibitory neurotransmitter or neuromodulator, with a similar action to the PF1/PF2 neuropeptides.


Author(s):  
Deborah J. Howse ◽  
Julia M. Potter ◽  
David I. Grove
Keyword(s):  

1981 ◽  
Vol 3 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Thota Srihari ◽  
Walter Wiehrer ◽  
Dirk Pette ◽  
Ben G. Harris

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6544
Author(s):  
Litao Zhang ◽  
Zhifeng Zhang

Background In some sedimentary environments, such as coastal intertidal and subtidal mudflats, sulfide levels can reach millimolar concentrations (2–5 mM) and can be toxic to marine species. Interestingly, some organisms have evolved biochemical strategies to overcome and tolerate high sulfide conditions, such as the echiuran worm, Urechis unicinctus. Mitochondrial sulfide oxidation is important for detoxification, in which sulfur dioxygenase (SDO) plays an indispensable role. Meanwhile, the body wall of the surface of the worm is in direct contact with sulfide. In our study, we chose the body wall to explore the SDO response to sulfide. Methods Two sulfide treatment groups (50 µM and 150 µM) and a control group (natural seawater) were used. The worms, U. unicinctus, were collected from the intertidal flat of Yantai, China, and temporarily reared in aerated seawater for three days without feeding. Finally, sixty worms with similar length and mass were evenly assigned to the three groups. The worms were sampled at 0, 6, 24, 48 and 72 h after initiation of sulfide exposure. The body walls were excised, frozen in liquid nitrogen and stored at −80 °C for RNA and protein extraction. Real-time quantitative RT-PCR, enzyme-linked immunosorbent assay and specific activity detection were used to explore the SDO response to sulfide in the body wall. Results The body wall of U. unicinctus consists of a rugal epidermis, connective tissue, outer circular muscle and middle longitudinal muscle. SDO protein is mainly located in the epidermis. When exposed to 50 µM sulfide, SDO mRNA and protein contents almost remained stable, but SDO activity increased significantly after 6 h (P < 0.05). However, in the 150 µM sulfide treatment group, SDO mRNA and protein contents and activity all increased with sulfide exposure time; significant increases all began to occur at 48 h (P < 0.05). Discussion All the results indicated that SDO activity can be enhanced by sulfide in two regulation mechanisms: allosteric regulation, for low concentrations, and transcription regulation, which is activated with an increase in sulfide concentration.


1985 ◽  
Vol 63 (3) ◽  
pp. 664-665 ◽  
Author(s):  
L. Garcia-Rejon ◽  
M. Sanchez-Moreno ◽  
S. Verdejo ◽  
M. Monteoliva

The site of production of sexual pheromones in Ascaris suum was studied. Different organ and tissue homogenates were used as attractant sources and a single worm of the opposite sex was used as a responder. The possible attraction of the worms towards homogenates from their own sexes was tested also. Males were attracted significantly to sexual organs of females, whereas females were attracted to testes and male body fluid. Females were attracted weakly to male cuticles. Attraction to homosexual sources was not found. The sexual organs are proposed as the site of pheromonal production in both sexes, and the body fluid as the vehicle for transport of male pheromone.


1952 ◽  
Vol 29 (1) ◽  
pp. 1-21
Author(s):  
A. D. HOBSON ◽  
W. STEPHENSON ◽  
L. C. BEADLE

1. The total osmotic pressure, electrical conductivity and chloride concentration of the body fluid of Ascaris lumbricoides and of the intestinal contents of the pig have been measured. 2. The results obtained agree with the observations of previous workers that Ascaris normally lives in a hypertonic medium and that it swells or shrinks in saline media which are too dilute or too concentrated. 3. Experiments comparing the behaviour of normal and ligatured animals show that both the body wall and the wall of the alimentary canal are surfaces through which water can pass. 4. 30% sea water has been used as a balanced saline medium for keeping the worms alive in the laboratory. This concentration was selected as being the one in which there was least change in the body weight of the animals exposed to it. 5. The osmotic pressure of the body fluid of worms kept in 30% sea water is approximately the same as in animals taken directly from the pig's intestine. The body fluid of fresh worms is hypertonic to 30% sea water and hypotonic to the intestinal fluid. In 30% sea water the normal osmotic gradient across the body wall is therefore reversed. 6. In 30% sea water the total ionic concentration (as measured by the conductivity) decreases slightly, but the chloride concentration increases by about 50%, although still remaining much below that of the external medium. 7. Experiments in which the animals were allowed to come into equilibrium with various concentrations of sea water from 20 to 40% show that there are corresponding changes in the osmotic pressure of the body fluid which is, however, always slightly above that of the saline medium. The conductivity also changes in a similar manner but is always less than that of the medium, and the difference between the two becomes progressively greater the more concentrated the medium. 8. The chloride concentration of the body fluid varies with but is always below that of the external medium, whether this is intestinal fluid or one of the saline media. In the latter the difference between the internal and external chloride concentrations is least in 20% sea water and becomes progressively greater as the concentration of the medium is increased. 9. Experiments with ligatured worms and with eviscerated cylinders of the body wall show that these share the capacity of the normal worm to maintain the chloride concentration of the body fluid below that of the environment. This power is not possessed by cylinders composed of the cuticle alone. 10. If the worms which have had their internal chloride concentration raised by exposure to 30% sea water are transferred to a medium composed of equal volumes of 30% sea water and isotonic sodium nitrate solution, the chloride concentration of the body fluid is reduced to a value below that of the external medium. This phenomenon is also displayed by worms ligatured after removal from the 30% sea water and, to an even more marked degree, by eviscerated cylinders of the body wall. 11. It is concluded that Ascaris is able to maintain the chloride concentration of the body fluid below that of the external medium by an process of chloride excretion against a concentration gradient, and that this mechanism is resident in the body wall, the cuticle being freely permeable to chloride.


This investigation is an attempt to obtain quantitative results on the method of functioning of the body-wall muscle-coelomic fluid system of the lugworm which was chosen as an example of a worm having this system in a relatively simple condition. Measurements of the hydrostatic pressure developed in the coelomic fluid during various phases of activity, particularly during burrowing, were recorded, and the mechanism by which pressure is differentially distributed throughout the body is discussed. The relation of pressure changes to burrowing movements is described and some calculations of the thrust which can be exerted by the worms are given. It is shown that the forces available to the worms are insufficient to allow of straight­-forward burrowing and that the ability to burrow depends on the thixotropic properties of the muddy sand in which the animals live.


Sign in / Sign up

Export Citation Format

Share Document