single worm
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1(60)) ◽  
pp. 15-19
Author(s):  
Iryna Kazak

The article highlights one of the ways to improve the design of the extruder body in order to increase the reliability and, at the same time, the quality of extrusion. The object of research is a single-worm extruder. One of the most problematic areas of the extruder is the body. The main disadvantage of the extruder is the wear of the body surfaces due to corrosion or abrasion and requires regular replacement. This is due to the abrasive properties of the polymers and, accordingly, due to the friction of the polymer material against the body and the worm, especially due to contamination in the recycled material. In various sources, the replacement of the extruder worm with a more advanced design is widely covered. And scientists do not pay enough attention to improving the body of the extruder, which indicates the relevance of this study. That is why the problem of increasing the reliability of the extruder body is completely unsolved and urgent. In the course of the study, we used an analysis of the structural features of the extruder body, a literature-patent review of existing methods for improving the body of a single-worm extruder to increase the reliability and, at the same time, the quality of extrusion. As a result of the literature and patent review, the option of improving the extruder body based on the prototype of the split body, which additionally contains an inner surface of steel ribbed plates, was selected. It was found that the ribbing of the plates on the inner surface of the body increases the wear resistance of the body and promotes more intensive advancement of the polymer used material to the extruder head. This is due to the fact that the proposed improved body of the extruder has a number of features: steel ribbed plates rigidly fixed inside it are installed with overlap of the parting line of the extruder body. This makes it possible to increase the wear resistance and, accordingly, the reliability of the extruder body and, additionally, the extrusion quality. Compared with the known one-piece structures of the extruder body, the design of the body is detachable with steel rigidly mounted ribbed plates on the inner surface, which will simplify maintenance during repairs and, at the same time, improve the quality of extrusion.


2021 ◽  
Author(s):  
Rebecca Cole ◽  
Nancy Holroyd ◽  
Alan Tracey ◽  
Matt Matt Berriman ◽  
Mark Viney

Nematodes are important parasites of people and animals, and in natural ecosystems they are a major ecological force. Strongyloides ratti is a common parasitic nematode of wild rats and we have investigated its population genetics using single worm, whole genome sequencing. We find that S. ratti populations consist of mixtures of asexual lineages, widely dispersed across the host population. Genes that underly the parasitic phase of its life cycle are hyperdiverse, compared with the rest of the genome. These patterns of parasitic nematode population genetics have not been found before and may also apply to Strongyloides spp. that infect people.


Parasitology ◽  
2020 ◽  
Vol 147 (5) ◽  
pp. 507-515 ◽  
Author(s):  
R. Alan Wilson

AbstractOnly with the completion of the life cycles of Fasciola hepatica in 1883 and 30 years later those of Schistosoma japonicum (1913), Schistosoma haematobium and Schistosoma mansoni (1915) did research on schistosomiasis really get underway. One of the first papers by Cawston in 1918, describing attempts to establish the means of transmission of S. haematobium in Natal, South Africa, forms the historical perspective against which to judge where we are now. Molecular biology techniques have produced a much better definition of the complexity of the schistosome species and their snail hosts, but also revealed the extent of hybridization between human and animal schistosomes that may impact on parasite adaptability. While diagnostics have greatly improved, the ability to detect single worm pair infections routinely, still falls short of its goal. The introduction of praziquantel ~1982 has revolutionized the treatment of infected individuals and led directly to the mass drug administration programmes. In turn, the severe pathological consequences of high worm burdens have been minimized, and for S. haematobium infections the incidence of associated squamous cell carcinoma has been reduced. In comparison, the development of effective vaccines has yet to come to fruition. The elimination of schistosomiasis japonica from Japan shows what is possible, using multiple lines of approach, but the clear and present danger is that the whole edifice of schistosome control is balanced on the monotherapy of praziquantel, and the development of drug resistance could topple that.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
G. Sallé ◽  
S. R. Doyle ◽  
J. Cortet ◽  
J. Cabaret ◽  
M. Berriman ◽  
...  

Abstract Haemonchus contortus is a haematophagous parasitic nematode of veterinary interest. We have performed a survey of its genome-wide diversity using single-worm whole genome sequencing of 223 individuals sampled from 19 isolates spanning five continents. We find an African origin for the species, together with evidence for parasites spreading during the transatlantic slave trade and colonisation of Australia. Strong selective sweeps surrounding the β-tubulin locus, a target of benzimidazole anthelmintic drug, are identified in independent populations. These sweeps are further supported by signals of diversifying selection enriched in genes involved in response to drugs and other anthelmintic-associated biological functions. We also identify some candidate genes that may play a role in ivermectin resistance. Finally, genetic signatures of climate-driven adaptation are described, revealing a gene acting as an epigenetic regulator and components of the dauer pathway. These results begin to define genetic adaptation to climate in a parasitic nematode.


2019 ◽  
Author(s):  
Florian Scharhauser ◽  
Judith Zimmermann ◽  
Jörg A. Ott ◽  
Nikolaus Leisch ◽  
Harald Gruber-Vodicka

AbstractStilbonematinae are a subfamily of conspicuous marine nematodes, distinguished by a coat of sulphur-oxidizing bacterial ectosymbionts on their cuticle. As most nematodes, the worm hosts have a simple anatomy and few taxonomically informative characters, and this has resulted in numerous taxonomic reassignments and synonymizations. Recent studies using a combination of morphological and molecular traits have helped to improve the taxonomy of Stilbonematinae but also raised questions on the validity of several genera. Here we describe a new circumtropically distributed genus Paralaxus (Stilbonematinae) with three species: Paralaxus cocos sp. nov., P. bermudensis sp. nov. and P. columbae sp. nov.. We used single worm metagenomes to generate host 18S rRNA and cytochrome oxidase I (COI) as well as symbiont 16S rRNA gene sequences. Intriguingly, COI alignments and primer matching analyses suggest that the COI is not suitxable for PCR-based barcoding approaches in Stilbonematinae as the genera have a highly diverse base composition and no conserved primer sites. The phylogenetic analyses of all three gene sets however confirm the morphological assignments and support the erection of the new genus Paralaxus as well as corroborate the status of the other stilbonematine genera. Paralaxus most closely resembles the stilbonematine genus Laxus in overlapping sets of diagnostic features but can be distinguished from Laxus by the morphology of the genus-specific symbiont coat. Our re-analyses of key parameters of the symbiont coat morphology as character for all Stilbonematinae genera show that with amended descriptions, including the coat, highly reliable genus assignments can be obtained.


Parasitology ◽  
2019 ◽  
Vol 146 (6) ◽  
pp. 805-813 ◽  
Author(s):  
Monica Caffara ◽  
Sean A. Locke ◽  
Ali Halajian ◽  
Wilmien J. Luus-Powell ◽  
Deborah Benini ◽  
...  

AbstractThe genus Clinostomoides Dollfus, 1950 was erected to accommodate a single worm from Ardea goliath sampled in the Belgian Congo. The specimen was distinguished from other clinostomids by its large size and posterior genitalia. In the following years, metacercariae of Clinostomoides brieni, have been described in Clarias spp. in southern and western Africa. A few authors have referred to Clinostomum brieni, but all such usages appear to be lapsus calami, and the validity of Clinostomoides remains widely accepted. In this study our aim was: position C. brieni among the growing clinostomids molecular database, and redescribe the species with emphasis on characters that have emerged as important in recent work. We sequenced two nuclear (partial 18S and ITS) and one mitochondrial marker (partial cytochrome c oxidase I) and studied morphology in metacercariae from hosts and localities likely to harbour the type species (Clarias spp., Democratic Republic of the Congo, South Africa). Phylogenetic analysis shows C. brieni belongs within Clinostomum Leidy, 1856. We therefore transfer C. brieni to Clinostomum, amend the diagnosis for the genus Clinostomum and provide a critical analysis of other species in Clinostomoides, all of which we consider species inquirendae, as they rest on comparisons of different developmental stages.


2018 ◽  
Author(s):  
Stephen A. Banse ◽  
Benjamin W. Blue ◽  
Kristin J. Robinson ◽  
Cody M. Jarrett ◽  
Patrick C. Phillips

AbstractAn organism’s ability to mount a physiological response to external stressors is fundamental to its interaction with the environment. Experimental exploration of these interactions benefits greatly from the ability to maintain tight control of the environment, even under conditions in which it would be normal for the subject to flee the stressor. ere we present a nematode research platform that pairs automated image acquisition and analysis with a custom microfluidic device. This platform enables tight environmental control in low-density, single-worm arenas, which preclude animal escape while still allowing a broad range of behavioral activities. The platform is easily scalable, with two 50 arena arrays per chip and an imaging capacity of 600 animals per scanning device. Validating the device using dietary, osmotic, and oxidative stress indicates that it should be of broad use as a research platform, including eventual adaptation for additional stressors, anthelmintic-drug screening, and toxicology studies.


2018 ◽  
Author(s):  
Io Long Chan ◽  
Oliver J. Rando ◽  
Colin C. Conine

ABSTRACTBleaching gravid C. elegans followed by a short period of starvation of the L1 larvae is a routine method performed by worm researchers for generating synchronous populations for experiments. During the process of investigating dietary effects on gene regulation in L1 stage worms by single-worm RNA-Seq, we found that the density of resuspended L1 larvae affects expression of many mRNAs. Specifically, a number of genes related to metabolism and signalling are highly expressed in worms arrested at low density, but are repressed at higher arrest densities. We generated a GFP reporter strain based on one of the most density-dependent genes in our dataset – lips-15 – and confirmed that this reporter was expressed specifically in worms arrested at relatively low density. Finally, we show that conditioned media from high density L1 cultures was able to downregulate lips-15 even in L1 animals arrested at low density, and experiments using daf-22 mutant animals demonstrated that this effect is not mediated by the ascaroside family of signalling pheromones. Together, our data implicate a soluble signalling molecule in density sensing by L1 stage C. elegans, and provide guidance for design of experiments focused on early developmental gene regulation.


Sign in / Sign up

Export Citation Format

Share Document