Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class

2005 ◽  
Vol 15 (4) ◽  
pp. 357-360 ◽  
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin

Studies were conducted to determine if small embryos (i.e. low embryo length:seed length ratio) in mature dwarf seeds (0.2–2 mm) are underdeveloped. In this case, they would grow (inside the seed) prior to germination, and seeds would have morphological or morphophysiological dormancy. Prior to radicle emergence, embryo length in seeds of Drosera anglica (Droseraceae), Campanula americana, Lobelia appendiculata, L. spicata (Campanulaceae) and Sabatia angularis (Gentianaceae) increased 0, 103, 182, 83 and 57%, respectively. Since embryo growth did not occur in seeds of D. anglica prior to germination, embryos, although small, are fully developed; seeds have only physiological dormancy. The underdeveloped embryo in seeds of C. americana has little or no physiological dormancy; thus, seeds have morphological dormancy. On the other hand, underdeveloped embryos in seeds of L. appendiculata, L. spicata and S. angularis are physiologically dormant, and seeds have morphophysiological dormancy. Therefore, since small embryos in dwarf seeds may or may not be underdeveloped, assignment of seeds to a dormancy class requires that studies be done to determine if embryos grow inside the seed before germination can occur. Such information is important in understanding the evolutionary relationship of the different kinds of seed dormancy.

Botany ◽  
2020 ◽  
Vol 98 (6) ◽  
pp. 327-332
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Alvin Yoshinaga ◽  
Dustin Wolkis

We determined the requirements for dormancy break/germination and kind of dormancy in seeds of the Hawaiian lobelioids Cyanea kunthiana, Delissea rhytidoperma, Lobelia grayana, L. hypoleuca, Trematolobelia grandifolia, and T. singularis. Fresh seeds were incubated in light/dark at 15/6, 20/10, and 25/15 °C, and germination monitored at two-week intervals for 14 weeks. For each species, the mean embryo length (E): seed (S) length ratio was determined for freshly matured seeds and for seeds at the time the seed coat split but before radicle emergence (germination). The embryo in seeds of all six species incubated at 25/15 °C grew inside the seed prior to germination (42%–148% increase in E:S ratio, depending on species). Seeds of L. grayana and L. hypoleuca have morphological dormancy (MD); they germinated to 82%–98% at the three temperature regimes in 4 weeks. Seeds of the other species have nondeep simple morphophysiological dormancy (MPD) and require >4 weeks for maximum germination to occur. Our results add to the growing body of knowledge about the kind (class) of seed dormancy in Campanulaceae, which suggests that seeds of members of this family have either MD or MPD and embryos grow at warm (≥15 °C) temperatures.


2020 ◽  
Vol 29 (2) ◽  
pp. e017
Author(s):  
Raquel Herranz-Ferrer ◽  
Miguel Ángel Copete-Carreño ◽  
José María Herranz-Sanz ◽  
Elena Copete-Carreño ◽  
Pablo Ferrandis-Gotor

Aim of the study: To study the germination ecology of two species of the genus Ribes to reveal their levels of morphophysiological dormancy (MPD) and to facilitate the production of plants from seeds, a key tool for population reinforcement.Area of study: Experiments were carried out both outdoors and in the laboratory in Albacete (Spain) with seeds from the Meridional Iberian System mountain range.Material and methods: Seeds from one population of Ribes alpinum and from other of Ribes uva-crispa were collected during several years. Embryo length, radicle and seedling emergence, and effects on germination of stratification and GA3 were analysed to determine the level of MPD.Main results: In R. alpinum, embryo length in fresh seeds was 0.49 mm, needing to grow to 1.30 mm to germinate. Warm stratification (25/10ºC) promoted embryo length enlargement to 0.97 mm. Afterwards, seeds germinated within a wide temperature range. Embryo growth and seedling emergence occur late summer-early autumn. In R. uva-crispa, embryo length in fresh seeds was 0.52 mm, being 2.10 mm the minimal size to germinate. Embryos exposed to a moderately warm stratification (20/7ºC + 15/4ºC) followed by cold (5ºC) grew to 2.30 mm. Then, seeds germinated ≥ 80% when incubated at temperatures ≥ 15/4ºC. Embryos grew in autumn/early winter, and seedlings emerged late winter-early spring.Research highlights: These results showed that R. alpinum seeds have a nondeep simple MPD while R. uva-crispa seeds have a nondeep complex MPD. Moreover, the different germinative models found for each species help explain their installation in distinct habitats.Keywords: Ribes; seed dormancy break; radicle emergence; seedling emergence; nondeep simple and nondeep complex MPD.Abbreviations used: Morphophysiological dormancy (MPD), morphological dormancy (MD), Gibberellic acid (GA3), months (m).


2006 ◽  
Vol 16 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin ◽  
Ching-Te Chien ◽  
Shun-Ying Chen

The embryo length/seed length (E/S) ratio of the early diverging eudicot Trochodendron aralioides is 0.34. Embryos in fresh seeds were 0.36±0.01 mm long, and they increased in length by about 250% (in 20 d) before radicle emergence (germination) occurred, demonstrating that the embryo is underdeveloped at seed maturity. Seeds germinated to 95–100% at 20/10, 25/15 and 30/15°C in light in ≤4 weeks, without any pretreatment, but no seeds germinated in darkness. Thus, seeds of T. aralioides have morphological dormancy (MD), which is considered to be the primitive condition in seed plants, and MD probably has existed in the genus Trochodendron since its origin in the early Tertiary.


2021 ◽  
pp. 1-29
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.


2000 ◽  
Vol 78 (9) ◽  
pp. 1199-1205 ◽  
Author(s):  
Siti N Hidayati ◽  
Jerry M Baskin ◽  
Carol C Baskin

Dormancy-breaking requirements and type of dormancy were determined for seeds of Diervilla lonicera Mill. Seeds have an underdeveloped linear embryo that is about 35% of the length of the seed at maturity. Embryos (in intact seeds) grew at 25:15°C but not at 5°C. Up to 85% of the freshly matured seeds had morphological dormancy (MD), and thus, they germinated within about 30 days on a moist substrate in light at 30:15°C; a maximum of 3% of the seeds germinated in constant darkness. The other portion of fresh seeds had nondeep simple morphophysiological dormancy (MPD) and required a period of warm stratification or treatment with GA3 to break dormancy. These seeds also required light to germinate. In contrast, cold stratification induced dormancy, and dry storage for up to 1 year did not effectively break dormancy. Seeds with MD germinated to significantly higher percentages on soil than on filter paper or on sand. Seeds sown on soil in a non-temperature-controlled greenhouse in mid-November germinated mostly in late May, whereas those sown in mid-April germinated in early May. Apparently, embryos of November-sown seeds were induced into physiological dormancy during winter. Thus, seeds had MPD in spring and needed several weeks of warm temperatures for dormancy break, embryo growth, and germination. This is the first report on seed dormancy in the genus Diervilla.Key words: embryo growth, germination phenology, Diervilla lonicera, morphological seed dormancy, morphophysiological seed dormancy, underdeveloped linear embryo.


2015 ◽  
Vol 25 (2) ◽  
pp. 82-98 ◽  
Author(s):  
Bas J.W. Dekkers ◽  
Leónie Bentsink

AbstractPhysiological dormancy has been described as a physiological inhibiting mechanism that prevents radicle emergence. It can be caused by the embryo (embryo dormancy) as well as by the structures that cover the embryo. One of its functions is to time plant growth and reproduction to the most optimal season and therefore, in nature, dormancy is an important adaptive trait that is under selective pressure. Dormancy is a complex trait that is affected by many loci, as well as by an intricate web of plant hormone interactions. Moreover, it is strongly affected by a multitude of environmental factors. Its induction, maintenance, cycling and loss come down to the central paradigm, which is the balance between two key hormonal regulators, i.e. the plant hormone abscisic acid (ABA), which is required for dormancy induction, and gibberellins (GA), which are required for germination. In this review we will summarize recent developments in dormancy research (mainly) in the model plant Arabidopsis thaliana, focusing on two key players for dormancy induction, i.e. the plant hormone ABA and the DELAY OF GERMINATION 1 (DOG1) gene. We will address the role of ABA and DOG1 in relation to various aspects of seed dormancy, i.e. induction during seed maturation, loss during dry seed afterripening, the rehydrated state (including dormancy cycling) and the switch to germination.


2013 ◽  
Vol 23 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Shun-Ying Chen ◽  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Ching-Te Chien

AbstractAlthough it has been speculated that seeds of the gymnosperm family Podocarpaceae have an underdeveloped embryo, no detailed studies have been done to definitively answer this question. Our purpose was to determine if embryos in seeds of two species of Podocarpaceae, Podocarpus costalis and Nageia nagi, from Taiwan are underdeveloped and to examine the kind of dormancy the seeds have. Embryos in fresh seeds of P. costalis were 4.6 ± 0.5 mm long, and they increased in length by about 54% before radicle emergence (germination), demonstrating that the embryo is underdeveloped at seed maturity. Seeds germinated to >90% at 30/20, 25/15 and 25°C in light in ≤ 4 weeks, without any cold stratification pretreatment. Thus, seeds of P. costalis have morphological dormancy (MD). Embryos in fresh seeds of N. nagi were 7.4 ± 0.8 mm long and they increased in length by about 39% before radicle emergence (germination) occurred, indicating that the embryo is underdeveloped at seed maturity. Seeds germinated to < 25% at 30/20 and 25°C in light in 4 weeks but to >90% at the same temperatures in 12 weeks. Thus, most seeds of N. nagi have morphophysiological dormancy (MPD). Although underdeveloped embryos are considered to be a primitive condition in seed plants, they also occur in the most advanced orders. The occurrence of underdeveloped embryos in Podocarpaceae documents that they are not restricted to a basal clade in gymnosperms.


2008 ◽  
Vol 18 (3) ◽  
pp. 179-184 ◽  
Author(s):  
Carol C. Baskin ◽  
Ching-Te Chien ◽  
Shun-Ying Chen ◽  
Jerry M. Baskin

AbstractPrevious studies indicated that seeds of Viburnum odoratissimum had only physiological dormancy (PD), but no measurements of embryos were made during the dormancy-break treatments. Thus, we investigated embryo growth and radicle and cotyledon emergence over a range of temperatures. Seeds have underdeveloped embryos, and their length increased about 300% before radicle emergence. Embryos also had PD, as evidenced by delays in beginning of embryo growth (2–3 weeks) and of germination after embryos were elongated (4 weeks). After radicle emergence, epicotyl emergence was delayed 1–8 weeks, depending on incubation temperature, but cold stratification was not required to break PD of the epicotyl. Unlike seeds of many previously studied Viburnum spp., epicotyls of V. odoratissimum have non-deep, rather than deep, PD. Hence, a new level of MPD called non-deep, simple, epicotyl MPD has been identified.


Botany ◽  
2017 ◽  
Vol 95 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Danping Song ◽  
Ganesh K. Jaganathan ◽  
Yingying Han ◽  
Baolin Liu

There are several different opinions regarding dormancy in tea (Camellia sinensis L.), but there is no strong evidence available to conclude whether or not these seeds are dormant. Freshly matured tea seeds collected from Hangzhou, China, at the natural dispersal time did not germinate in light at daily alternative temperature regimes of 10/15, 15/20, 20/25, or 25/35 °C, or at a constant temperature of 25 °C. Seeds were permeable to water and the embryos did not grow prior to radicle emergence, thus, the seeds have no physical, morphological, or morphophysiological dormancy. When cold-stratified at 4 °C for 1, 2, and 3 months, 64%, 88%, and 93% of the seeds germinated, respectively. Intact fresh seeds failed to germinate after treatment with 0, 10, 500, and 1000 ppm GA3, whereas 3%, 4%, 61%, and 86% of cracked seeds germinated, respectively. Thus, the seeds have nondeep and intermediate physiological dormancy. Seeds cold-stratified for 2 months that were buried at soil depths of 0, 1, and 5 cm in pots showed that seeds at 1 cm depth established significantly higher number of seedlings (P < 0.05) than at other two depths. Because tea seeds are susceptible to summer temperature drying, these seeds do not establish a persistent seed bank.


2010 ◽  
Vol 20 (2) ◽  
pp. 109-121 ◽  
Author(s):  
José M. Herranz ◽  
Miguel Á. Copete ◽  
Pablo Ferrandis ◽  
Elena Copete

AbstractSeeds of Aconitum napellus subsp. castellanum were physiologically dormant at maturity in early autumn, with underdeveloped embryos. Thus they have morphophysiological dormancy (MPD). Embryos in fresh seeds were on average 1.01 mm long, and they had to grow to 3.60 mm before radicle emergence. Cold stratification at 5°C for 5 months with light enhanced the mean embryo length to 2.73 mm (SE = 0.13) and seed germination to 20%. However, with higher temperatures (15/4, 20/7, 25/10, 28/14 and 32/18°C) embryo growth was small, with no seeds germinating. Optimal germination was achieved after 4 months of cold stratification at 5°C followed by incubation at 20/7°C for 1 month with light, when germination ranged between 70 and 79%, depending on seed age, locality and year of collection. Cold stratification could be substituted by the application of GA3 solution, since mean embryo length in seeds incubated at 25/10°C for 1 month with light was 3.52 mm and the germination was 80%. Since cold stratification was the only requirement for the loss of MPD, the longest embryo growth occurred during this treatment, and GA3 promoted MPD loss, we concluded that A. napellus seeds have intermediate complex MPD. Germination was higher in 4-month stored than in freshly matured seeds. A pronounced variability in germinative patterns at inter-annual and inter-population level was recorded.


Sign in / Sign up

Export Citation Format

Share Document