Derivation of the two-dimensional carreau law for a quasi-newtonian fluid flow through a thin slab

1995 ◽  
Vol 57 (3-4) ◽  
pp. 243-269 ◽  
Author(s):  
Fouad Boughanim ◽  
Roland Tapiéro
2019 ◽  
Vol 12 (32) ◽  
pp. 1-6
Author(s):  
Abid Ali Memon ◽  
Hisam-uddin Shaikh ◽  
Baqir Ali Shah ◽  
Muhammad Afzal Soomro ◽  
Abdul Ghafoor Shaikh ◽  
...  

2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

Author(s):  
Moussa Tembely ◽  
Ali M. AlSumaiti ◽  
Khurshed Rahimov ◽  
Mohamed S. Jouini

Author(s):  
M. Yasep Setiawan ◽  
Wawan Purwanto ◽  
Wanda Afnison ◽  
Nuzul Hidayat

This study discusses the numerical study of two-dimensional analysis of flow through circular cylinders. The original physical information entered in the equation governing most of the modeling is transferred into a numerical solution. Fluid flow on two-dimensional circular cylinder wall using high Reynolds k-ε modeling (Re = 106), Here we will do 3 modeling first oder upwind, second order upwind and third order MUSCL by using k-ε standard.  The general procedure for this research is formulated in detail for allocations in the dynamic analysis of fluid computing. The results of this study suggest that MUSCL's third order modeling gives more accurate results better than other models.


2020 ◽  
Vol 43 (5) ◽  
pp. 457-462
Author(s):  
Pramod Kumar Yadav ◽  
Jaikanth Yadav Puchakatla ◽  
Sneha Jaiswal

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ilyas Khan ◽  
Abid A. Memon ◽  
M. Asif Memon ◽  
Kaleemullah Bhatti ◽  
Gul M. Shaikh ◽  
...  

This article aims to study Newtonian fluid flow modeling and simulation through a rectangular channel embedded in a semicircular cylinder with the range of Reynolds number from 100 to 1500. The fluid is considered as laminar and Newtonian, and the problem is time independent. A numerical procedure of finite element’s least Square technique is implemented through COMSOL multiphysics 5.4. The problem is validated through asymptotic solution governed through the screen boundary condition. The vortex length of the recirculating region formed at the back of the cylinder and orientation of velocity field and pressure will be discussed by three horizontal and four vertical lines along the recirculating region in terms of Reynolds number. It was found that the two vortices of unequal size have appeared and the lengths of these vortices are increased with the increase Reynolds number. Also, the empirical equations through the linear regression procedure were determined for those vortices. The orientation of the velocity magnitude as well as pressure along the lines passing through the center of upper and lower vortices are the same.


Sign in / Sign up

Export Citation Format

Share Document