Security Implications of a Worst-case Scenario of Climate Change in the South-west Pacific

1999 ◽  
Vol 30 (3) ◽  
pp. 311-330 ◽  
Author(s):  
Michael J. Edwards
Author(s):  
A. S. M. Maksud Kamal ◽  
Momtahina Mitu ◽  
Md. Shakhawat Hossain ◽  
M. Moklesur Rahman ◽  
Md. Zillur Rahman

2003 ◽  
Vol 9 (4) ◽  
pp. 248
Author(s):  
George L. W. Perry ◽  
N. J. Enright

The vegetation dynamics and disturbance regimes of the south-west Pacific have been significantly altered following human settlement. Previously forested landscapes are now dominated by a matrix of flammable early successional vegetation within which patches of mesic, fire-sensitive forest are embedded. Future environmental change, and in particular climate change, will further affect disturbance regimes in these ecosystems. If ignition frequency and fire extent increase, then the persistence of these landscapes in their current composition and structure is uncertain. Using a spatially explicit landscape ecological model, we explored the implications of climatically altered fire regimes for landscape composition and structure in a mountain-top reserve in New Caledonia. The outcomes of the modeling suggest that increased ignition probability and vegetation flammability would lead to a maquis (heathland)-dominated landscape structurally simpler than that seen today. The feasibility of fire suppression as a means of managing altered fire regimes was explored using a series of model experiments. Fire suppression has been problematic in some systems, especially those where fire hazard increases over time. However, in this ecosystem, and others in the south-west Pacific, it may be a viable alternative for managing fire because fire hazard, in terms of flammability, peaks early in the succession and then decreases over successional time.


Author(s):  
Sadie J. Ryan ◽  
Colin J. Carlson ◽  
Blanka Tesla ◽  
Matthew H. Bonds ◽  
Calistus N. Ngonghala ◽  
...  

AbstractIn the aftermath of the 2015 pandemic of Zika virus, concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we use a model of thermal bounds on Zika virus (ZIKV) transmission to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). In the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.Author SummaryFirst discovered in Uganda in the 1950s, Zika virus (ZIKV) is a new threat to global health security. The virus is spread primarily by female Aedes mosquitoes, with occasional sexual transmission in humans, and can cause Zika congenital syndrome (which includes fetal abnormalities like microcephaly) when women are infected during pregnancy. Our study is the first to quantify how many people may be exposed to temperatures suitable for ZIKV transmission in a changing climate. In the worst-case scenario, by 2050, climate change could expose more than 1.3 billion people worldwide to temperatures suitable for transmission - for the first time. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Sports ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 76
Author(s):  
Dylan Mernagh ◽  
Anthony Weldon ◽  
Josh Wass ◽  
John Phillips ◽  
Nimai Parmar ◽  
...  

This is the first study to report the whole match, ball-in-play (BiP), ball-out-of-play (BoP), and Max BiP (worst case scenario phases of play) demands of professional soccer players competing in the English Championship. Effective playing time per soccer game is typically <60 min. When the ball is out of play, players spend time repositioning themselves, which is likely less physically demanding. Consequently, reporting whole match demands may under-report the physical requirements of soccer players. Twenty professional soccer players, categorized by position (defenders, midfielders, and forwards), participated in this study. A repeated measures design was used to collect Global Positioning System (GPS) data over eight professional soccer matches in the English Championship. Data were divided into whole match and BiP data, and BiP data were further sub-divided into different time points (30–60 s, 60–90 s, and >90 s), providing peak match demands. Whole match demands recorded were compared to BiP and Max BiP, with BiP data excluding all match stoppages, providing a more precise analysis of match demands. Whole match metrics were significantly lower than BiP metrics (p < 0.05), and Max BiP for 30–60 s was significantly higher than periods between 60–90 s and >90 s. No significant differences were found between positions. BiP analysis allows for a more accurate representation of the game and physical demands imposed on professional soccer players. Through having a clearer understanding of maximum game demands in professional soccer, practitioners can design more specific training methods to better prepare players for worst case scenario passages of play.


Author(s):  
Gregory M. Foggitt ◽  
Andre Heymans ◽  
Gary W. Van Vuuren ◽  
Anmar Pretorius

Background: In the aftermath of the sub-prime crisis, systemic risk has become a greater priority for regulators, with the National Treasury (2011) stating that regulators should proactively monitor changes in systemic risk.Aim: The aim is to quantify systemic risk as the capital shortfall an institution is likely to experience, conditional to the entire financial sector being undercapitalised.Setting: We measure the systemic risk index (SRISK) of the South African (SA) banking sector between 2001 and 2013.Methods: Systemic risk is measured with the SRISK.Results: Although the results indicated only moderate systemic risk in the SA financial sector over this period, there were significant spikes in the levels of systemic risk during periods of financial turmoil in other countries. Especially the stock market crash in 2002 and the subprime crisis in 2008. Based on our results, the largest contributor to systemic risk during quiet periods was Investec, the bank in our sample which had the lowest market capitalisation. However, during periods of financial turmoil, the contributions of other larger banks increased markedly.Conclusion: The implication of these spikes is that systemic risk levels may also be highly dependent on external economic factors, in addition to internal banking characteristics. The results indicate that the economic fundamentals of SA itself seem to have little effect on the amount of systemic risk present in the financial sector. A more significant relationship seems to exist with the stability of the financial sectors in foreign countries. The implication therefore is that complying with individual banking regulations, such as Basel, and corporate governance regulations promoting ethical behaviour, such as King III, may not be adequate. It is therefore proposed that banks should always have sufficient capital reserves in order to mitigate the effects of a financial crisis in a foreign country. The use of worst-case scenario analyses (such as those in this study) could aid in determining exactly how much capital banks could need in order to be considered sufficiently capitalised during a financial crisis, and therefore safe from systemic risk.


Sign in / Sign up

Export Citation Format

Share Document