scholarly journals Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders

Automatika ◽  
2020 ◽  
Vol 61 (3) ◽  
pp. 396-414
Author(s):  
Israr Ahmad ◽  
Muhammad Shafiq
2008 ◽  
Vol 18 (08) ◽  
pp. 2425-2435 ◽  
Author(s):  
SAMUEL BOWONG ◽  
RENÉ YAMAPI

This study addresses the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. For a class of uncertain chaotic systems with parameter mismatch and external disturbances, a robust adaptive observer based on the response system is constructed to practically synchronize the uncertain drive chaotic system. Lyapunov stability theory ensures the practical synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of two illustrative examples are given to verify the effectiveness of the proposed method.


2020 ◽  
Vol 10 (24) ◽  
pp. 8875 ◽  
Author(s):  
Assef Zare ◽  
Seyede Zeynab Mirrezapour ◽  
Majid Hallaji ◽  
Afshin Shoeibi ◽  
Mahboobeh Jafari ◽  
...  

In this paper, a robust adaptive control strategy is proposed to synchronize a class of uncertain chaotic systems with unknown time delays. Using Lyapunov theory and Lipschitz conditions in chaotic systems, the necessary adaptation rules for estimating uncertain parameters and unknown time delays are determined. Based on the proposed adaptation rules, an adaptive controller is recommended for the robust synchronization of the aforementioned uncertain systems that prove the robust stability of the proposed control mechanism utilizing the Lyapunov theorem. Finally, to evaluate the proposed robust and adaptive control mechanism, the synchronization of two Jerk chaotic systems with finite non-linear uncertainty and external disturbances as well as unknown fixed and variable time delays are simulated. The simulation results confirm the ability of the proposed control mechanism in robust synchronization of the uncertain chaotic systems as well as to estimate uncertain and unknown parameters.


2008 ◽  
Vol 18 (10) ◽  
pp. 3129-3136 ◽  
Author(s):  
FANG-LAI ZHU ◽  
MAO-YIN CHEN

Within the drive-response configuration, this paper considers the synchronization of uncertain chaotic systems based on observers. Even if there are unknown disturbances and parameters in the drive system, a robust adaptive full-order observer can be used to realize chaos synchronization. Further, we develop a reduced-order observer-based response system to synchronize the drive system. By choosing a special reduced-order gain matrix, the reduced-order observer-based response system turns out to be linear and can eliminate the influence of the unknown disturbances and parameters directly. We also discuss the above mentioned two kinds of observers in numerical simulation, and demonstrate that the linear reduced-order observer-based response system is better than the full-order observer-based one.


Sign in / Sign up

Export Citation Format

Share Document