Cardiac renin-angiotensin system (gene expression) and plasma angiotensin II in chickens with T3-induced pulmonary hypertension

2016 ◽  
Vol 57 (4) ◽  
pp. 444-450 ◽  
Author(s):  
H. Hassanpour ◽  
A. Afzali ◽  
R. Fatemi Tabatabaie ◽  
M. Torabi ◽  
Y. Alavi
2014 ◽  
Vol 306 (11) ◽  
pp. F1327-F1334 ◽  
Author(s):  
Eva Márquez ◽  
Marta Riera ◽  
Julio Pascual ◽  
María José Soler

Podocytes are key cells in the glomerular filtration barrier with a major role in the development of diabetic nephropathy. Podocytes are insulin-sensitive cells and have a functionally active local renin-angiotensin system. The presence and activity of angiotensin-converting enzyme 2 (ACE2), the main role of which is cleaving profibrotic and proinflammatory angiotensin-II into angiotensin-(1–7), have been demonstrated in podocytes. Conditionally immortalized mouse podocytes were cultured with insulin in the presence and absence of albumin. We found that insulin increases ACE2 gene and protein expression, by real-time PCR and Western blotting, respectively, and enzymatic activity within the podocyte and these increases were maintained over time. Furthermore, insulin favored an “anti-angiotensin II” regarding ACE/ACE2 gene expression balance and decreased fibronectin gene expression as a marker of fibrosis in the podocytes, all studied by real-time PCR. Similarly, insulin incubation seemed to protect podocytes from cell death, studied by a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. However, all these effects disappeared in the presence of albumin, which may mimic albuminuria, a main feature of DN pathophysiology. Our results suggest that modulation of renin-angiotensin system balance, fibrosis, and apoptosis by insulin in the podocyte may be an important factor in preventing the development and progression of diabetic kidney disease, but the presence of albuminuria seems to block these beneficial effects.


1999 ◽  
Vol 160 (1) ◽  
pp. 43-47 ◽  
Author(s):  
H Kobori ◽  
A Ichihara ◽  
Y Miyashita ◽  
M Hayashi ◽  
T Saruta

We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.


1978 ◽  
Vol 55 (s4) ◽  
pp. 319s-321s ◽  
Author(s):  
H. Ibsen ◽  
A. Leth ◽  
H. Hollnagel ◽  
A. M. Kappelgaard ◽  
M. Damkjaer Nielsen ◽  
...  

1. Twenty-five patients with mild essential hypertension, identified during a survey of a population born in 1936, were investigated. 2. Basal and post-frusemide values for plasma renin concentration and plasma angiotensin II concentration did not differ markedly from reference values in 25 40-year-old control subjects. In the untreated, sodium replete state saralasin infusion (5·4 nmol min−1 kg−1) produced an increase in mean arterial pressure in the patient group as a whole. 3. Twenty-one patients were treated with hydrochlorothiazide, mean dose 75 mg/day for 3 months. Pre-treatment, frusemide-stimulated plasma renin concentration and plasma angiotensin II, and values during thiazide treatment were higher in ‘non-responders’ (n = 10) to hydrochlorothiazide treatment than in ‘thiazide-responders’ (n = 11). During thiazide therapy, angiotensin II blockade induced a clear-cut decrease in mean arterial pressure in all ‘thiazide-nonresponders’ whereas only four out of 11 ‘thiazide-responders’ showed a borderline decline in mean arterial pressure. 4. The functional significance of the renin—angiotensin system in mild essential hypertension emerges only after thiazide treatment. Thiazide-induced stimulation of the renin—angiotensin system counter-balanced the hypotensive effect of thiazide in some 40% of the treated patients. Thus the responsiveness of the renin—angiotensin system determined the blood pressure response to thiazide treatment.


Reproduction ◽  
2008 ◽  
Vol 136 (1) ◽  
pp. 125-130 ◽  
Author(s):  
D Herr ◽  
M Rodewald ◽  
H M Fraser ◽  
G Hack ◽  
R Konrad ◽  
...  

This study was performed in order to evaluate the role of angiotensin II in physiological angiogenesis. Human umbilical vein endothelial cells (HUVEC) were stained for angiotensin II type 1 receptor (AGTR1) immunocytochemically and for gene expression of renin–angiotensin system (RAS) components. The regulation of the angiogenesis-associated genes vascular endothelial growth factor (VEGF) and angiopoietins (ANGPT1andANGPT2) were studied using quantitative RT-PCR. Furthermore, we examined the effect of angiotensin II on the proliferation of HUVEC using Ki-67 as well as BrdU immunocytochemistry and investigated whether the administration of the AGTR1 blocker candesartan or the VEGF antagonist FLT1-Fc could suppress the observed angiotensin II-dependent proangiogenic effect. AGTR1 was expressed in HUVEC and the administration of angiotensin II significantly increased the gene expression ofVEGFand decreased the gene expression ofANGPT1. Since the expression ofANGPT2was not affected significantly the ratio of ANGPT1/ANGPT2 was decreased. In addition, a significantly increased endothelial cell proliferation was observed after stimulation with angiotensin II, which was suppressed by the simultaneous administration of candesartan or the VEGF antagonist FLT1-Fc. These results indicate the potential capacity of angiotensin II in influencing angiogenesis by the regulation of angiogenesis-associated genes via AGTR1. Since VEGF blockade opposed the effect of angiotensin II on cell proliferation, it is hypothesised that VEGF mediates the angiotensin II-dependent effect in concert with the changes in angiopoietin expression. This is the first report of the RAS on the regulation of angiogenesis-associated genes in physiology.


1974 ◽  
Vol 48 (s2) ◽  
pp. 27s-30s
Author(s):  
E. Hackenthal ◽  
H. Bauknecht ◽  
P. Oster

1. Antibodies against angiotensin II were purified by affinity chromatography. 2. When injected intravenously into rats, the antibody distributed in the extracellular space with a half-time of 11 h and a distribution volume of about 10 ml/100 g body weight. The antibody was eliminated with a half-time of 7 days. 3. Plasma angiotensin II concentrations increased about 100-fold the control values 7 min after antibody injection and declined in parallel with the antibody concentration. It was calculated that only about 1–4% of the binding capacity of the antibody was occupied by angiotensin throughout the experiment. 4. Since the plasma renin concentration was normal, except during the short initial phase of stimulation, it is concluded that upon antibody injection the renin-angiotensin system rapidly, reached an equilibrium, with concentrations of free angiotensin close to or identical with normal concentrations.


1995 ◽  
Vol 88 (4) ◽  
pp. 433-437 ◽  
Author(s):  
Evelyn A. Millar ◽  
Gordon T. McInnes ◽  
Neil C. Thomson

1. We have previously described activation of the renin—angiotensin system in asthma, and also by high-dose nebulized β2-agonists. In this study we sought to determine the mechanism responsible. 2. The influence of the angiotensin-converting enzyme inhibitor, lisinopril, on the response of the renin—angiotensin system and serum potassium to nebulized salbutamol was investigated in a randomized, double-blind, crossover study in eight healthy volunteers using a factorial block design. On study days, subjects received lisinopril 20 mg orally or identical placebo tablets followed 3 h later by nebulized salbutamol or placebo inhalation; plasma renin, angiotensin II, serum angiotensin-converting enzyme and potassium were measured at intervals for 120 min after inhalation. 3. Following salbutamol, plasma renin and angiotensin II concentrations were increased significantly compared with placebo [mean (SEM) plasma renin of 61.7 (15.6) μ-units/ml and angiotensin II of 17.7 (5.4) pg/mol 15 min after salbutamol, P < 0.05 versus placebo]. Baseline plasma renin concentrations were increased [160.1 (20.6) μ-units/ml] and baseline plasma angiotensin II concentrations were reduced [1.4 (0.1) pg/ml] by lisinopril, P < 0.05 versus placebo in each case. Inhibition of angiotensin-converting enzyme completely inhibited this salbutamol-induced rise in plasma angiotensin II [mean (SEM) plasma angiotensin II of 1.5 (0.4) pg/ml 15 min after salbutamol, P < 0.05 versus placebo] but had no effect on the changes in plasma renin concentrations after the β2-agonist [mean (SEM) plasma renin of 198.4 (18.9) μ-units/ml 15 min after salbutamol]. 4. Serum angiotensin-converting enzyme concentrations tended to increase throughout the study period following salbutamol compared with placebo, although this difference was not statistically significant. Lisinopril caused complete suppression of serum angiotensin-converting enzyme. 5. Salbutamol significantly reduced serum potassium concentrations [mean (SEM) baseline serum potassium of 4.26 (0.16) mmol/l decreasing to 3.08 (0.2) mmol/l at 45 min, P < 0.05 versus placebo]. Although lisinopril had no significant effect on serum potassium, the hypokalaemic response to salbutamol was significantly reduced in the presence of the angiotensin-convering enzyme inhibitor [mean (SEM) decrease in serum potassium of −1.2 (0.2) mmol/l compared with −0.8 (0.2) mmol/l, P < 0.05 versus placebo]. 6. Mean blood pressure was unaffected by active therapy. One subject experienced dizziness and headache after lisinopril. 7. The results of this study confirm that nebulized salbutamol causes activation of plasma renin and angiotensin II. Pretreatment with an angiotensin-converting enzyme inhibitor prevented the salbutamol-induced increase in plasma angiotensin II but not renin concentration. 8. We conclude that elevation of plasma angiotensin II induced by high-dose nebulized β2-agonists involves the classical components of the renin—angiotensin system including angiotensin-converting enzyme.


1986 ◽  
Vol 250 (5) ◽  
pp. R898-R901 ◽  
Author(s):  
R. Di Nicolantonio ◽  
F. A. Mendelsohn

The role of the renin-angiotensin system in the stimulation and termination of dehydration-induced drinking was examined in the rat. Rats dehydrated for 48 h had significantly elevated renin, angiotensin II, plasma Na+ concentration, osmolality, and hematocrit when compared with replete controls. Although plasma Na+ concentration, osmolality, and hematocrit of dehydrated rats had returned to control replete levels by 2-4 h after the return of water, the plasma renin and angiotensin II levels exhibited a further increase on rehydration and remained significantly above dehydration levels for 2-4 h after the return of water. The levels of renin and angiotensin II in rehydrated rats were maintained at levels in excess of the dipsogenic threshold for circulating angiotensin II during the 8-h period after rehydration, indicating that termination of the drinking is not dependent on a reduction of circulating angiotensin II. Finally, rehydrated rats did not drink significantly more than replete controls in the 1- to 8-h postrehydration period despite plasma angiotensin II levels in excess of that of the dipsogenic threshold for angiotensin II, indicating that mechanisms exist which override the dipsogenic action of circulating angiotensin II.


Sign in / Sign up

Export Citation Format

Share Document