Time course of oxidative phosphorylation in liver mitochondria of chickens fed on high‐protein diet

1995 ◽  
Vol 36 (1) ◽  
pp. 143-154 ◽  
Author(s):  
M. Tanaka ◽  
T. Ishibashi ◽  
M. Toyomizu
1974 ◽  
Vol 142 (2) ◽  
pp. 359-364 ◽  
Author(s):  
J. D. McGivan ◽  
Norah M. Bradford ◽  
J. B. Chappell

1. Citrulline synthesis was measured in mitochondria from rats fed on a standard diet, a high-protein diet, or on glucose. 2. With NH4Cl as the nitrogen source the rate of citrulline synthesis was higher in mitochondria from rats fed on a high-protein diet than in those from rats fed on a standard diet. When rats were fed solely on glucose the rate of synthesis of citrulline from NH4Cl was very low. 3. With glutamate as the nitrogen source the relative rates of citrulline synthesis were much lower than when NH4Cl was present, but similar adaptive changes occurred. 4. The activity of the mitochondrial glutamate-transporting system increased two to three times on feeding rats on a high-protein diet, but the Km for glutamate was unchanged. 5. Adaptive changes in certain intramitochondrial enzymes were also measured. 6. The results were interpreted to indicate that when an excess of substrate was present, citrulline synthesis from NH4Cl was rate-limited by the intramitochondrial concentration of N-acetyl-glutamate, but citrulline synthesis from glutamate was rate-limited primarily by the activity of the glutamate-transporting system.


Gut ◽  
1997 ◽  
Vol 41 (5) ◽  
pp. 612-618 ◽  
Author(s):  
G Shi ◽  
V Leray ◽  
C Scarpignato ◽  
N Bentouimou ◽  
S Bruley des Varannes ◽  
...  

Background—Recent studies indicate that gastric emptying may be influenced by patterns of previous nutrient intake. Endogenous cholecystokinin (CCK), whose synthesis and release can be affected by dietary intake, has a major role in the regulation of gastric emptying.Aims—To evaluate the influence of diets with differing protein content on gastric emptying of differing liquid test meals and plasma CCK levels in the rat and to check whether the inhibitory effect of exogenous CCK on gastric emptying is modified after long term intake of diets with differing protein content. Methods—Rats were fed for three weeks with high protein, medium protein (regular), or low protein diet. On day 22 gastric emptying of a peptone meal was studied. In addition, basal and postprandial CCK levels after the different dietary regimens were measured by bioassay. The time course of dietary adaptation was studied and its specificity assessed through the use of different (peptone, glucose, and methylcellulose) test meals. The effect of exogenous CCK-8 on gastric emptying was studied at the end of the adaptation period (three weeks).Results—Feeding the animals with a high protein diet for three weeks resulted in a significant (p<0.05) acceleration (by 21.2 (8.2)%) of gastric emptying while feeding with a low protein diet was followed by a significant (p<0.05) delay (by 24.0 (6.2)%) in the emptying rate. When the time course of the effect of dietary adaptation on gastric emptying was studied, it appeared that at least two weeks are required for dietary protein to be effective. The regulatory effect of dietary protein on gastric emptying proved to be dependent on meal composition. Only the emptying rate of a protein containing meal (40% peptone) was significantly modified by previous dietary intake. No significant (p>0.05) changes were observed with glucose and methylcellulose meals whose emptying rates were similar in rats receiving a high protein or low protein diet. A peptone meal strongly and significantly (p<0.05) increased plasma CCK levels in rats fed a medium protein (regular) diet. Results were similar in rats receiving a low protein diet (p<0.05) but not in rats on a high protein diet (p>0.05). As a consequence, postprandial plasma levels of CCK in rats fed with a medium or low protein diet were significantly (p<0.05) higher than those in rats receiving a high protein diet. In rats on high and low protein diets, dose response curves to CCK-8 were virtually identical, suggesting that dietary protein intake has no influence on the effect of exogenous CCK.Conclusions—These results clearly show that gastric emptying of a protein containing meal can be modified by previous dietary protein intake. This effect, which is time dependent and meal specific, may be related to changes in endogenous CCK release which will affect emptying rate. While the exact mechanisms underlying this adaptive response need to be studied and clarified further, these results emphasise the importance of dietary history in the evaluation and interpretation of gastric emptying data.


1988 ◽  
Vol 265 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Antonio Jordá ◽  
Remedios Zaragozá ◽  
Manuel Portolés ◽  
Rafael Báguena-Cervellera ◽  
Jaime Renau-Piqueras

2008 ◽  
Vol 67 (OCE5) ◽  
Author(s):  
F. Vitari ◽  
A. Morise ◽  
M. Formal ◽  
C. Garcia ◽  
K. Mace ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 180
Author(s):  
Kouki Shimizu ◽  
Issei Seiki ◽  
Yoshiyuki Goto ◽  
Takeshi Murata

The intestinal pH can greatly influence the stability and absorption of oral drugs. Therefore, knowledge of intestinal pH is necessary to understand the conditions for drug delivery. This has previously been measured in humans and rats. However, information on intestinal pH in mice is insufficient despite these animals being used often in preclinical testing. In this study, 72 female ICR mice housed in SPF (specific pathogen-free) conditions were separated into nine groups to determine the intestinal pH under conditions that might cause pH fluctuations, including high-protein diet, ageing, proton pump inhibitor (PPI) treatment, several antibiotic treatment regimens and germ-free mice. pH was measured in samples collected from the ileum, cecum and colon, and compared to control animals. An electrode, 3 mm in diameter, enabled accurate pH measurements with a small amount of gastrointestinal content. Consequently, the pH values in the cecum and colon were increased by high-protein diet, and the pH in the ileum was decreased by PPI. Drastic alkalization was induced by antibiotics, especially in the cecum and colon. The alkalized pH values in germ-free mice suggested that the reduction in the intestinal bacteria caused by antibiotics led to alkalization. Alkalization of the intestinal pH caused by antibiotic treatment was verified in mice. We need further investigations in clinical settings to check whether the same phenomena occur in patients.


2016 ◽  
Vol 146 (3) ◽  
pp. 474-483 ◽  
Author(s):  
Chunlong Mu ◽  
Yuxiang Yang ◽  
Zhen Luo ◽  
Leluo Guan ◽  
Weiyun Zhu

Sign in / Sign up

Export Citation Format

Share Document