Effects of nitromethane addition on the laminar burning velocity and ignition delay of syngas/air flames

2018 ◽  
Vol 190 (7) ◽  
pp. 1283-1301 ◽  
Author(s):  
Atmadeep Bhattacharya ◽  
Amitava Datta
Energy ◽  
2017 ◽  
Vol 126 ◽  
pp. 796-809 ◽  
Author(s):  
Jun Li ◽  
Hongyu Huang ◽  
Noriyuki Kobayashi ◽  
Chenguang Wang ◽  
Haoran Yuan

Author(s):  
Duc-Khanh Nguyen ◽  
Louis Sileghem ◽  
Sebastian Verhelst

The current work provides a quasi-dimensional model for the combustion of methanol–gasoline blends. New correlations for the laminar burning velocity of gasoline and methanol are developed and used together with a mixing rule to calculate the laminar burning velocity of the blends. Several factors (such as the laminar burning velocity, initial flame kernel, residual gas fraction, turbulence, etc.) have been investigated and the sensitivity of these factors and the used sub-models on the predictive performance was assessed. The simulation results were compared with measurement data from two engines on different gasoline–methanol blends. The results show the importance of the laminar burning velocity correlation, the method of initializing combustion and the turbulent burning velocity model. The newly developed laminar burning velocity correlation of gasoline performed equally or better than the existing correlations and the newly developed correlation of methanol outperformed the other correlations. The initial flame kernel size had a strong influence on the ignition delay. Changing the initial flame kernel to reproduce the same ignition delay was very effective to improve the simulations. Several turbulent combustion models were tested with the newly developed laminar burning velocity correlations and optimized ignition delay. In conclusion, the model of Bradley reproduced the trend going from gasoline to methanol much better than others due to the inclusion of the Lewis number.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3562
Author(s):  
Fekadu Mosisa Wako ◽  
Gianmaria Pio ◽  
Ernesto Salzano

The need for lowering the environmental impacts has incentivized the investigation of biomass and biofuels as possible alternative sources for energy supply. Among the others, oxygenated bio-derived molecules such as alcohols, esters, acids, aldehydes, and furans are attractive substances as chemical feedstock and for sustainable energy production. Indeed, the presence of oxygen atoms limits the production of aromatic compounds, improves combustion efficiency (thus heat production) and alleviates the formation of carbon soot. On the other hand, the variability of their composition has represented one of the major challenges for the complete characterization of combustion behaviour. This work gives an overview of the current understanding of the detailed chemical mechanisms, as well as experimental investigations characterizing the combustion process of these species, with an emphasis on the laminar burning velocity and the ignition delay time. From the review, the common intermediates for the most relevant functional groups and combustion of biofuels were identified. The gathered information can be intended for the sake of core mechanism generation.


Author(s):  
Nguyen Minh Tien Nguyen

This study presents the effect of ignition energy (Eig) on ignition delay time (tdelay) and uncertainty of laminar burning velocity (Su0) measurement of lean methane/air mixture in a constant volume combustion chamber. The mixture at an equivalence ratio of 0.6 is ignited using a pair of electrodes at the 2-mm spark gap. Eig is measured by integrating the product of voltage V(t) and current I(t) signals during a discharge period. The in-chamber pressure profiles are analyzed using the pressure-rise method to obtain tdelay and Su0. Su0 approximates 8.0 cm/s. Furthermore, the increasing Eig could shorten tdelay, leading to a faster combustion process. However, when Eig is greater than a critical value, called minimum reliable ignition energy (MRIE), the additional elevating Eig has the marginal effect on tdelay and Su0. The existence of MRIE supports to optimize the ignition systems and partly explains why extreme-high Eig>> MRIE has less contribution to engine performance.


2014 ◽  
Vol 39 (17) ◽  
pp. 9534-9544 ◽  
Author(s):  
Yong He ◽  
Zhihua Wang ◽  
Wubin Weng ◽  
Yanqun Zhu ◽  
Junhu Zhou ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


Sign in / Sign up

Export Citation Format

Share Document