A COMPARISON OF FREE-MOVING AND PRESSURE LEVERS IN A POSITIONAL CONTROL SYSTEM*

Ergonomics ◽  
1965 ◽  
Vol 8 (1) ◽  
pp. 23-29 ◽  
Author(s):  
D. BURKE ◽  
C. B. GIBBS
1978 ◽  
Vol 203 (1151) ◽  
pp. 153-176 ◽  

To account for the positions in which vascular cambia regenerate in wound callus, a gradient induction hypothesis was proposed in 1961 in terms of gradients in ‘some factor as yet unknown’. It now seems likely that the gradient is based on morphogen diffusion between source and sink on opposite sides of existing cambia, with morphogen diffusing into the adjoining wound callus. It is specifically proposed that there are two morphogens, auxin diffusing centrifugally and sucrose diffusing centripetally. The cambium then regenerates along a path where the ratio of auxin to sucrose concentration is similar to that at the original cambium, and its orientation (as regards xylem and phloem formation) is determined by the direction of the gradient in this ratio. These proposals are supported by published evidence on auxin and sucrose concentration gradients across the cambium, and on their sources, movements, and known effects on vascular differentiation. Simulations of the proposed positional control system predict patterns of cambial regeneration and orientation corresponding to those observed in four different types of would and graft.


2018 ◽  
Vol 5 (4) ◽  
pp. 10-16
Author(s):  
Pham Huy Thoa

  In order to investigate different position control algorithms for numerical controlled machines and robots, a positional control system was built on the base of  a microcomputer. In part I, the paper presents the  observer algorithm for  state variable estimation and the state variable feedback control algorithm applied to the position control of a  particular machine-table. With the hardware and software structure of the microcomputer based digital system described in this paper different control algorithms can be  realized flexibly. The position control problem for the plant with variations or  uncertainties of  parameters and load characteristics will be reported in part II.


2021 ◽  
Author(s):  
Badur Tchunashvili ◽  
Mamuka Kobalia ◽  
Alexander Petrosyan ◽  
Revaz Gurgenadze ◽  
Giorgi Bulbulashvili

2021 ◽  
pp. 19-23
Author(s):  
ALEKSEI S. DOROKHOV ◽  
◽  
ALEKSEI V. SIBIRYOV ◽  
ALEKSANDR G. AKSENOV ◽  
MAKSIM A. MOSYAKOV ◽  
...  

The authors have carried out analytical studies on the development and rationalization of a system for automatic controlling the depth of tillage, a block diagram and an algorithm for a linear positional control system, as well as off ered a design scheme to develop a control algorithm. A mathematical model describing the control object that regulates the tillage depth has been determined, provided that the motion trajectory of the moving parts of the driving links and the actuator rods of the automatic system controlling the tillage depth is perfectly traced. A structural diagram of a linear system of positional control of the soil tillage depth has been developed, which is a mechanism for adjusting the support wheel with an acting disturbance on the control object, changing the distance between the O axis of the wheel rotation of the tillage machine power tool and the rotation axis of the support wheels of a soil cultivation machine. A design scheme to develop a control algorithm for changing the tillage depth has been obtained. To determine the required accuracy and modes of using hardware in various phase states of the soil layer, a basic set of hardware was identifi ed and analyzed to ensure that it meets the requirements for controlling the tillage depth of the working elements. They include a sensor for determining the penetration depth of the working element; microcontroller (setting and control of regulated force impact on the soil, i.e. vertical movement of the electric cylinder rod); electric cylinders (linear actuators). To test the developed algorithms for the functioning of the automatic control system for adjusting the travel depth of the working elements for presowing soil cultivation, it is necessary to conduct experimental studies in laboratory and production conditions.


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


Sign in / Sign up

Export Citation Format

Share Document