Modeling and simulation of control strategy of engine multi-loop cooling system

2021 ◽  
Vol 579 (1) ◽  
pp. 33-43
Author(s):  
Wei Wang ◽  
Keyang Yu ◽  
Qilan Huang
2014 ◽  
Vol 722 ◽  
pp. 182-189
Author(s):  
Li Gang Ma ◽  
Chang Le Xiang ◽  
Tian Gang Zou ◽  
Fei Hong Mao

The paper proposes a cascade control strategy of speed feedback in inner loop and temperature feedback in outer ring for hydro-viscous driven fan cooling system, and compares the simulation of PID and fuzzy PID. The simulation result shows that the double-loop control system while the response time longer, but much smaller overshoot, can achieve a good feedback to adjust the fan speed and temperature and realize stepless speed regulation of hydro-viscous driven fan cooling system under the premise of stability for fan speed and system temperature.


Author(s):  
Guojin Chen ◽  
Chang Chen ◽  
Yiming Yuan ◽  
Yishuai Yue

The internal combustion power equipment is a typical cyber-physical system (CPS). The traditional design method is to separate the information system from the physical system, and then to simulate and optimize separately every system. That can not achieve the best performance. Aiming at the internal combustion power equipment with multi-disciplinary deep integration, this paper establishes the multi-disciplinary model of the whole and key components based on Dymola software. There are mainly mechanical system, combustion system, cooling system, control system and other simulation models, including deceleration and fuel cut-off control unit modeling, start-stop control unit modeling and speed limit control unit modeling. The performance of each model is simulated and analyzed. The mathematical models of engine characteristic curve and fuel supply rate curve are established through experimental study. Finally, taking the simulation model of automobile power system as an example, the simulation calculation and experimental verification are carried out, and the relationship among fuel supply rate, torque, speed and valve of internal combustion engine is obtained, as well as the cooling capacity of the cooling system is studied. The experimental results show that the maximum error between the simulation speed curve and the actual speed curve is within ± 2 km/h. The research results of this paper can provide theoretical basis for multidisciplinary modeling and simulation of internal combustion power equipment, and also provide technical support for performance analysis of internal combustion engine.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Dajian Li ◽  
Liangyuan Chen ◽  
Jian Zhao ◽  
Xiajin Rao

Sign in / Sign up

Export Citation Format

Share Document