Energy harvesting from a floor structure based on multiple piezoelectric transducer beams

2021 ◽  
Vol 577 (1) ◽  
pp. 181-191
Author(s):  
Xiang Zhong ◽  
Sheng Wang ◽  
Jun Chen ◽  
Xiangfu Liu ◽  
Mingjie Guan ◽  
...  
2012 ◽  
Vol 28 (4) ◽  
pp. 214-219 ◽  
Author(s):  
Jaakko Palosaari ◽  
Mikko Leinonen ◽  
Jari Hannu ◽  
Jari Juuti ◽  
Heli Jantunen

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3516 ◽  
Author(s):  
He ◽  
Wang ◽  
Zhong ◽  
Guan

This paper proposes a novel energy harvesting floor structure using piezoelectric elements for converting energy from human steps into electricity. The piezoelectric energy harvesting structure was constructed by a force amplification mechanism and a double-layer squeezing structure in which piezoelectric beams were deployed. The generated electrical voltage and output power were investigated in practical conditions under different strokes and step frequencies. The maximum peak-to-peak voltage was found to be 51.2 V at a stroke of 5 mm and a step frequency of 1.81 Hz. In addition, the corresponding output power for a single piezoelectric beam was tested to be 134.2 μW, demonstrating the potential of harvesting energy from the pedestrians for powering low-power electronic devices.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000105-000111
Author(s):  
Arkadiusz P. Dabrowski ◽  
Slawomir Owczarzak ◽  
Henryk Roguszczak ◽  
Leszek J. Golonka

In this paper, design, technology and properties of multi cantilever transducer for energy harvesting application were described. The piezoelectric transducer was made in LTCC (Low Temperature Cofired Ceramics) technology using PZT (Lead Zirconate-Titanate) based tape. In such devices the highest power can be reached at resonance frequencies of the cantilevers. Eight bimorph transducers with lengths corresponding to 33, 50, 58, 66, 75, 82, 91 and 100 Hz resonant frequency, were designed. The transducers were polarized in serial or parallel configuration. To avoid voltage reduction in the system of a few piezoelectric bimorphs, rectifiers were applied for each cantilever. Transducers had optimum resistance in ranges of 60–140 kΩ and 300–600 kΩ for bimorphs poled in parallel and serial configuration, respectively. The mean output power under sinusoidal excitation with 20 μm vibration amplitude calculated from all maxima at resonant frequencies for optimum load, were equal to 10.3 μW and 12.4μW for parallel and serial configurations with rectifier. Without rectifier the values were equal to 18.2 μW for both the transducers. In case of mean output power, the difference between both the transducers was not really significant, however at higher frequency the maximum power was higher for serial configuration. Besides, the output voltage obtained in serial bimorph was higher than in parallel one. The mean power density for all the resonant peaks measured at 0.41 g was equal to 210 μW/cm3/g and 360 μW/cm3/g with and without rectifier, respectively.


Sign in / Sign up

Export Citation Format

Share Document