Thermodynamics of first order ferroelectric phase transition in an external magnetic field

1986 ◽  
Vol 69 (1) ◽  
pp. 313-320 ◽  
Author(s):  
V. E. Yurkevich ◽  
A. I. Rodin
2012 ◽  
Vol 26 (28) ◽  
pp. 1250183 ◽  
Author(s):  
VLADIMIR NAZAROV ◽  
RISHAT SHAFEEV

Theoretically, with the aid of a soliton model, the evolution of a new-phase nucleus near the first-order spin-reorientation phase transition in magnets has been investigated in an external magnetic field. The influence of an external field and one-dimensional defects of magnetic anisotropy on the dynamics of such nucleus has been demonstrated. The conditions for the localization of the new-phase nucleus in the region of the magnetic anisotropy defect and for its escape from the defect have been determined. The values of the critical fields which bring about the sample magnetization reversal have been identified and estimated.


2020 ◽  
Vol 8 (17) ◽  
pp. 5868-5872 ◽  
Author(s):  
Zhangran Gao ◽  
Yuying Wu ◽  
Zheng Tang ◽  
Xiaofan Sun ◽  
Zixin Yang ◽  
...  

Ferroelectricity of trimethylammonium bromide was discovered near room temperature, which undergoes a first-order paraelectric–ferroelectric phase transition at the Curie temperature around 286 K.


2015 ◽  
Vol 41 (10) ◽  
pp. 981-983 ◽  
Author(s):  
E. Koroleva ◽  
A. Naberezhnov ◽  
V. Nizhankovskii ◽  
P. Vanina ◽  
A. Sysoeva

1997 ◽  
Vol 493 ◽  
Author(s):  
J. Romero ◽  
L. F. Fonseca

ABSTRACTThe macroscopic polarization of ferroelectric thin films was studied by Monte Carlo simulations using a Transverse Ising Model Hamiltonian with four-spins interactions. The dependence of the ferroelectric phase transition temperature, Tc, on the thickness of the film was obtained resulting in a shifting of Tc towards lower temperatures and a change from first-order to second-order phase transition as the thickness of the film is reduced. Comparison between the surface and internal order was carried out by the calculation of layer-averaged polarizations as a function of the sample temperature and the surface interaction parameters. These comparisons show that increasing disorder at the surface can be reverted by increasing the four-spins surface interactions.


Sign in / Sign up

Export Citation Format

Share Document