Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods

2013 ◽  
Vol 90 (10) ◽  
pp. 2049-2060 ◽  
Author(s):  
Santiago Artidiello ◽  
Francisco Chicharro ◽  
Alicia Cordero ◽  
Juan R. Torregrosa
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


2013 ◽  
Vol 18 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Baoqing Liu ◽  
Xiaojian Zhou

Recently, some optimal fourth-order iterative methods for multiple roots of nonlinear equations are presented when the multiplicity m of the root is known. Different from these optimal iterative methods known already, this paper presents a new family of iterative methods using the modified Newton’s method as its first step. The new family, requiring one evaluation of the function and two evaluations of its first derivative, is of optimal order. Numerical examples are given to suggest that the new family can be competitive with other fourth-order methods and the modified Newton’s method for multiple roots.


2019 ◽  
Vol 24 (3) ◽  
pp. 335-350
Author(s):  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
Pura Vindel

In this paper, we study the dynamics of an iterative method based on the Ermakov-Kalitkin class of iterative schemes for solving nonlinear equations. As it was proven in ”A new family of iterative methods widening areas of convergence, Appl. Math. Comput.”, this family has the property of getting good estimations of the solution when Newton’s method fails. Moreover, the set of converging starting points for several non-polynomial test functions was plotted and they showed to be wider in the case of proposed methods than in Newton’s case, for small values of the parameter. Now, we make a complex dynamical analysis of this parametric class in order to justify the stability properties of this family.


2019 ◽  
Vol 1 (2) ◽  
pp. e1023 ◽  
Author(s):  
Francisco I. Chicharro ◽  
Alicia Cordero ◽  
Neus Garrido ◽  
Juan R. Torregrosa

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1640
Author(s):  
Petko D. Proinov ◽  
Milena D. Petkova

In this paper, we construct and study a new family of multi-point Ehrlich-type iterative methods for approximating all the zeros of a uni-variate polynomial simultaneously. The first member of this family is the two-point Ehrlich-type iterative method introduced and studied by Trićković and Petković in 1999. The main purpose of the paper is to provide local and semilocal convergence analysis of the multi-point Ehrlich-type methods. Our local convergence theorem is obtained by an approach that was introduced by the authors in 2020. Two numerical examples are presented to show the applicability of our semilocal convergence theorem.


2021 ◽  
Vol 5 (2) ◽  
pp. 27
Author(s):  
Debasis Sharma ◽  
Ioannis K. Argyros ◽  
Sanjaya Kumar Parhi ◽  
Shanta Kumari Sunanda

In this article, we suggest the local analysis of a uni-parametric third and fourth order class of iterative algorithms for addressing nonlinear equations in Banach spaces. The proposed local convergence is established using an ω-continuity condition on the first Fréchet derivative. In this way, the utility of the discussed schemes is extended and the application of Taylor expansion in convergence analysis is removed. Furthermore, this study provides radii of convergence balls and the uniqueness of the solution along with the calculable error distances. The dynamical analysis of the discussed family is also presented. Finally, we provide numerical explanations that show the suggested analysis performs well in the situation where the earlier approach cannot be implemented.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


2021 ◽  
Author(s):  
Matthew David Williams ◽  
Dennis Hong

Abstract We introduce and define a new family of mobile robots called BAR (Buoyancy Assisted Robots) that are cheap, safe, and will never fall down. BARs utilize buoyancy from lighter-than-air gases as a way to support the weight of the robot for locomotion. A new BAR robot named BLAIR (Buoyant Legged Actuated Inverted Robot) whose buoyancy is greater than its weight is also presented in this paper. BLAIRs can walk “upside-down” on the ceiling, providing unique advantages that no other robot platforms can. Unlike other legged robots, the mechanics of how BARs walk is fundamentally different. We also perform a preliminary investigation for BARs. This includes comparing safety, cost, and energy consumption with other commercially available robots. Additionally, the preliminary investigation also includes analyzing previous works relating to BARs. A dynamical analysis is performed on the novel robot BLAIR. This is presented to show the impacts of buoyant and drag forces on BLAIRs. Preliminary analysis with the prevalence of drag is presented with simulations using a genetic algorithm and simulations. Results show that BARs with different mechanisms prefer different styles of walking gaits such as prancing or skipping. This work lays the foundation for future research work on the gaits for BARs.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Stoil I. Ivanov

In this paper, we establish two local convergence theorems that provide initial conditions and error estimates to guarantee the Q-convergence of an extended version of Chebyshev–Halley family of iterative methods for multiple polynomial zeros due to Osada (J. Comput. Appl. Math. 2008, 216, 585–599). Our results unify and complement earlier local convergence results about Halley, Chebyshev and Super–Halley methods for multiple polynomial zeros. To the best of our knowledge, the results about the Osada’s method for multiple polynomial zeros are the first of their kind in the literature. Moreover, our unified approach allows us to compare the convergence domains and error estimates of the mentioned famous methods and several new randomly generated methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia Cordero ◽  
Moin-ud-Din Junjua ◽  
Juan R. Torregrosa ◽  
Nusrat Yasmin ◽  
Fiza Zafar

We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.


Sign in / Sign up

Export Citation Format

Share Document