Radiation characteristics of a helical ground plane antenna†

1969 ◽  
Vol 27 (2) ◽  
pp. 177-183
Author(s):  
M. N. ROY
2011 ◽  
Vol 53 (12) ◽  
pp. 2854-2858
Author(s):  
Marko Sonkki ◽  
Eva Antonino-Daviu ◽  
Miguel Ferrando-Bataller ◽  
Erkki T. Salonen

2003 ◽  
Vol 28 (3/4) ◽  
pp. 99-104 ◽  
Author(s):  
D.D. Chrusch ◽  
C. Shafai ◽  
L. Shafai ◽  
S. Sharma
Keyword(s):  

Author(s):  
Funda Cirik ◽  
Bahadir Süleyman Yildirim

A high-gain microstrip patch-type WiMAX antenna operating at 3.5 GHz has been designed with a parasitic radiator and a raised ground plane. Antenna design has been carried out through extensive three-dimensional electromagnetic simulations. The patch antenna itself provides a realized gain of about 3.6 dB at 3.5 GHz. When a parasitic radiator is placed on top of the patch antenna, the gain increases from about 3.6 dB to about 7.4 dB. The raised ground plane further enhances the gain by about 1.5 dB. Hence the overall gain improvement is about 5.3 dB without the need of a radio-frequency amplifier.


This paper presents the fabrication of an octagonal fractal hybrid micro strip radiator patch antenna that operates over a frequency range of 1.5 GHz to 2GHz suitable for low frequency wireless and mobile applications. The radiator has a dimension of 85x85mm2 on the radiating side and 100x86mm2 ground plane. The model is fabricated on Fire Redundant4 substrate with thickness of 1.6mm over a 10x10mm2 dimension and uses coaxial feeding technique. The model is tested for its performance in the range of 1.5 to 2 GHz on the radiator test bench consists of MIC10 antenna trainer kit with an allowable frequency of up to 2GHz. The radiation characteristics shown are having good return loss and average gain of 39dB with omni directional radiation pattern. The size is to be optimized as the dimensions are very large compared to the usual requirements.


2020 ◽  
Vol 9 (2) ◽  
pp. 52-59
Author(s):  
H. A. Hammas ◽  
M. F. Hasan ◽  
A. S. A. Jalal

In this paper, a compact multiband printed antenna is proposed to cover four resonant bands in the range of 1-6 GHz. The antenna structure is inspired from that of the classical multi-cavity magnetron resonator. The antenna comprises a slot annular ring structure in the ground plane of an Isola FR4 substrate having Ԑr = 3.5 and thickness h=1.5 mm. The outer circle of the annular ring is loaded with radial arranged small circular slots. On the opposite side of the substrate, the antenna is fed with a 50-Ohm microstrip line. To investigate the effect of different antenna elements on the antenna performance, a parametric study is conducted. The antenna is simulated, fabricated, and measured. The simulated 10 dB return loss bandwidths for the four resonant bands are 35% (1.53–2.11GHz), 14% (2.9–3.34GHz), 12% (4.2–4.75GHz), and 9% (4.94–5.39GHz), respectively. Thus, the antenna is a proper candidate for many in use bands of wireless systems (1.65, 3.14, 4.44, 5.24 GHz), including LTE-FDD, GNSS, GSM-450, W-CDMA/HSPA/k, 802.11a, and IEEE 802.11ac WLAN. The results indicate that the designed antenna has quad-band resonant responses with substantial frequency ratios of f4/f3, f3/f2 and f2/f1. Besides, the antenna offers reasonable radiation characteristics with a gain of 2.5, 4.0, 6.2, and 4.2 dBi, throughout the four resonant bands.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ismahayati Adam ◽  
Muhammad Ramlee Kamarudin ◽  
Ali H. Rambe ◽  
Norshakila Haris ◽  
Hasliza A. Rahim ◽  
...  

This paper analysed the effects of bending on the performance of a textile antenna wherein the antenna under test was made of felt substrate for both industrial, scientific, and medical (ISM) band and WBAN applications at 2.45 GHz. Moreover, the conductive material was used for the patch, and the ground plane used a 0.17 mm Shieldit textile. Meanwhile, the antenna structure was in the form of rectangular, with a line patch in between elements to abate the mutual coupling effect. The measured operating frequency range of the antenna spanned from 2.33 GHz to 2.5 GHz with a gain of 4.7 dBi at 2.45 GHz. In this paper, the antenna robustness was examined by bending the structure on different radii and degrees along both X- and Y-axis. Next, the effects on return loss, bandwidth, isolation, and radiation characteristics were analysed. This paper also discovered that the antenna’s performance remained acceptable as it was deformed, and the measured results agreed well with the simulation.


Sign in / Sign up

Export Citation Format

Share Document