scholarly journals Analysis and design of a 3.5-GHz patch antenna for WiMAX applications

Author(s):  
Funda Cirik ◽  
Bahadir Süleyman Yildirim

A high-gain microstrip patch-type WiMAX antenna operating at 3.5 GHz has been designed with a parasitic radiator and a raised ground plane. Antenna design has been carried out through extensive three-dimensional electromagnetic simulations. The patch antenna itself provides a realized gain of about 3.6 dB at 3.5 GHz. When a parasitic radiator is placed on top of the patch antenna, the gain increases from about 3.6 dB to about 7.4 dB. The raised ground plane further enhances the gain by about 1.5 dB. Hence the overall gain improvement is about 5.3 dB without the need of a radio-frequency amplifier.

Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 176 ◽  
Author(s):  
Raj Gaurav Mishra ◽  
Ranjan Mishra ◽  
Piyush Kuchhal ◽  
N. Prasanthi Kumari

Microstrip antennas that can operate in single and multiple frequency bands are required in various wireless communication devices. A single patch, square shaped microstrip patch antenna having high directivity and gain is proposed in this paper. The geometry of proposed antenna is optimized using Genetic Algorithm (GA) to operate in X-Band for wideband applications. The proposed antenna design exhibits a wide operating bandwidth 550 MHz (simulated) and 450 MHz (measured), high gain and directivity of about 8.35 dB (simulated) making it suitable for wideband applications. The proposed antenna design works in X-band which has weatherproof characteristics and supports easy communication of voice, data, images and HD videos. The attractiveness of the GA design over the traditional design methods is its ability to achieve the desired performance by using a simple design of single patch antenna.


Author(s):  
Raghuraj Sharan Saxena ◽  
Rishik Shrivastava ◽  
Ritu Muchhal ◽  
Rahul Tiwari

As the wireless technology is advancing rapidly, there is also an increasing demand for high data rates and large bandwidth. So, the new generation technology (5G) is proposed. For this purpose, there is a need of advanced antenna design, and here the authors are using a microstrip patch antenna, which is highly preferred due to low profile, simple manufacturing, and ease of feeding. This research presents the design of 28.132 GHz microstrip patch antenna. We have used FR-4 substrate here is which has a dielectric constant Er= 4.3 and a thickness of 0.5 mm. The dimensions of patch are 4.8×6.8×0.5mm including the ground plane. It has a bandwidth of 1.613 GHz, return loss of -19.175 dB, VSWR 1.24 dB, VSWR as 1.24 dB, gain as 3.82 dB and total efficiency of -3.116 dB.. The designing and simulation of this antenna is performed by CST studio suite software and various specifications such as S-parameter, VSWR, and radiation pattern is discussed. Furthermore, comparative analysis is done, which is indicating the variation of antenna parameters on varying the design dimensions.


2020 ◽  
Vol 16 (2) ◽  
pp. 1-6
Author(s):  
Mohammed Alkhafaji

This paper presents a new design of the filtering antenna with a quasi-elliptic function response. The basic structure of the proposed filtering antenna is consists of a four-folded arms open-loop resonator (OLR). The proposed filtering antenna is simulated, improved and, analyzed by using 3D Computer Simulation Technology (CST) electromagnetic simulator software. The design has good spurious harmonic suppression in the upper and lower stopbands. The Insertion Loss of the proposed filtering antenna IL=0.2 dB and the Return Loss RL= -25.788 dB at the center frequency fo=5.75 GHz. The passband bandwidth which is relatively wide, and equal to 0.793 GHz. The microstrip filtering antenna circuit shows good design results compared to the conventional microstrip patch antenna. The filtering antenna design circuit with etched ground plane structure also has good design results compared to the filtering antenna design which has a complete ground plane structure.


Frequenz ◽  
2019 ◽  
Vol 73 (1-2) ◽  
pp. 45-52 ◽  
Author(s):  
Ahmed Abdelaziz ◽  
Ehab K. I. Hamad

Abstract In this paper, a Tri-band microstrip-line-fed low profile microstrip patch antenna is proposed for future multi-band 5 G wireless communication applications. The proposed antenna is printed on a compact Rogers RT5880 substrate of dimensions 20×16.5×0.508 mm3 with relative permittivity, εr of 2.2 and loss tangent, tan δ of 0.0009. To improve return loss and bandwidth of the proposed antenna, a partial ground plane technique is employed. The proposed antenna operates at 10, 28, and 38 GHz, three of the selected frequencies which are allocated by the International Telecommunication Union (ITU) for 5 G mobile communications. To reduce interference between the 5 G system and other systems in the band, a pair of T-shaped slots is etched in the radiating patch to reject unwanted frequency bands. The proposed design provides a gain of 5.67 dB at 10 GHz, 9.33 dB at 28 GHz and 9.57 dB at 38 GHz; the radiation pattern is mostly directional. The proposed antenna is designed and optimized using two commercial 3D full-wave software, viz. CST microwave studio and Ansoft HFSS. A prototype of the designed antenna that was fabricated and showed good agreement between the actual measurements of S11 & VSWR and the simulation results using both software.


Sign in / Sign up

Export Citation Format

Share Document