Population growth, the environment and fertility control

1974 ◽  
Vol 7 (1) ◽  
pp. 51-55 ◽  
Author(s):  
R. O. Greep
2014 ◽  
Vol 41 (1) ◽  
pp. 1 ◽  
Author(s):  
Giovanna Massei ◽  
Dave Cowan

As human populations grow, conflicts with wildlife increase. Concurrently, concerns about the welfare, safety and environmental impacts of conventional lethal methods of wildlife management restrict the options available for conflict mitigation. In parallel, there is increasing interest in using fertility control to manage wildlife. The present review aimed at analysing trends in research on fertility control for wildlife, illustrating developments in fertility-control technologies and delivery methods of fertility-control agents, summarising the conclusions of empirical and theoretical studies of fertility control applied at the population level and offering criteria to guide decisions regarding the suitability of fertility control to mitigate human–wildlife conflicts. The review highlighted a growing interest in fertility control for wildlife, underpinned by increasing numbers of scientific studies. Most current practical applications of fertility control for wild mammals use injectable single-dose immunocontraceptive vaccines mainly aimed at sterilising females, although many of these vaccines are not yet commercially available. One oral avian contraceptive, nicarbazin, is commercially available in some countries. Potential new methods of remote contraceptive delivery include bacterial ghosts, virus-like particles and genetically modified transmissible and non-transmissible organisms, although none of these have yet progressed to field testing. In parallel, new species-specific delivery systems have been developed. The results of population-level studies of fertility control indicated that this approach may increase survival and affect social and spatial behaviour of treated animals, although the effects are species- and context-specific. The present studies suggested that a substantial initial effort is generally required to reduce population growth if fertility control is the sole wildlife management method. However, several empirical and field studies have demonstrated that fertility control, particularly of isolated populations, can be successfully used to limit population growth and reduce human–wildlife conflicts. In parallel, there is growing recognition of the possible synergy between fertility control and disease vaccination to optimise the maintenance of herd immunity in the management of wildlife diseases. The review provides a decision tree that can be used to determine whether fertility control should be employed to resolve specific human–wildlife conflicts. These criteria encompass public consultation, considerations about animal welfare and feasibility, evaluation of population responses, costs and sustainability.


2018 ◽  
Vol 45 (3) ◽  
pp. 195 ◽  
Author(s):  
Rebecca J. Hobbs ◽  
Lyn A. Hinds

Context Fertility control is seen as an attractive alternative to lethal methods for control of population size and genetic diversity in managed animal populations. Immunocontraceptive vaccines have emerged as the most promising agents for inducing long-term infertility in individual animals. However, after over 20 years of scientific testing of immunocontraceptive vaccines in the horse, the scientific consensus is that their application as a sole management approach for reducing population size is not an effective strategy. Aims The purpose of this review is to evaluate currently available non-lethal fertility-control methods that have been tested for their contraceptive efficacy in Equidae, and to assess their suitability for effective management of wild (feral) horses in an Australian setting. Key results (1) Fertility-control agents, particularly injectable immunocontraceptive vaccines based on porcine zona pellucida (PZP) or gonadotrophin-releasing hormone (GnRH), can induce multi-year infertility (up to 3 years) in the horse. Some formulations require annual or biennial booster treatments. Remote dart delivery (on foot) to horses is possible, although the efficacy of this approach when applied to large numbers of animals is yet to be determined. (2) The proportion of females that must be treated with a fertility-control agent, as well as the frequency of treatment required to achieve defined management outcomes (i.e. halting population growth in the short term and reducing population size in the long term) is likely to be >50% per annum. In national parks, treatment of a large number of wild horses over such a broad area would be challenging and impractical. (3) Fertility control for wild horses could be beneficial, but only if employed in conjunction with other broad-scale population-control practices to achieve population reduction and to minimise environmental impacts. Conclusions In Australia, most populations of wild horses are large, dispersed over varied and difficult-to-access terrain, are timid to approach and open to immigration and introductions. These factors make accessing and effectively managing animals logistically difficult. If application of fertility control could be achieved in more than 50% of the females, it could be used to slow the rate of increase in a population to zero (2–5 years), but it will take more than 10–20 years before population size will begin to decline without further intervention. Thus, use of fertility control as the sole technique for halting population growth is not feasible in Australia.


Human Ecology ◽  
1987 ◽  
Vol 15 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Isaac Sindiga

1996 ◽  
Vol 17 (4) ◽  
pp. 1-14 ◽  
Author(s):  
Jane Menken ◽  
Randall Kuhn

This article reviews the demographic effects of breastfeeding on fertility and child survival and, ultimately, on population growth. Extended breastfeeding both reduces fertility by prolonging birth intervals and increases child survival through improved nutrition, especially where adequate substitutes are not available. The results presented show, however, that although breastfeeding is a major determinant of fertility in the absence of other means of fertility control, prolonged breastfeeding alone cannot reduce fertility to levels consonant with slow or zero population growth. The benefits, at least for the first year of life, demonstrate the need for policies that promote breastfeeding and encourage compatibility between breastfeeding and other aspects of women's fives. In particular, policies are needed that permit women to breastfeed their children while, at the same time, improving their socio-economic circumstances through participation in the labour force.


Sign in / Sign up

Export Citation Format

Share Document