Exploring a two-product unreliable manufacturing system as a capacity constraint for a two-echelon supply chain dynamic problem

Author(s):  
Antonio Costa ◽  
Salvatore Cannella ◽  
Roberto R. Corsini ◽  
Jose M. Framinan ◽  
Sergio Fichera
Author(s):  
Mohammed Alkahtani ◽  
Muhammad Omair ◽  
Qazi Salman Khalid ◽  
Ghulam Hussain ◽  
Imran Ahmad ◽  
...  

The management of a controllable production in the manufacturing system is essential to achieve viable advantages, particularly during emergency conditions. Disasters, either man-made or natural, affect production and supply chains negatively with perilous effects. On the other hand, flexibility and resilience to manage the perpetuated risks in a manufacturing system are vital for achieving a controllable production rate. Still, these performances are strongly dependent on the multi-criteria decision making in the working environment with the policies launched during the crisis. Undoubtedly, health stability in a society generates ripple effects in the supply chain due to high demand fluctuation, likewise due to the Coronavirus disease-2019 (COVID-19) pandemic. Incorporation of dependent demand factors to manage the risk from uncertainty during this pandemic has been a challenge to achieve a viable profit for the supply chain partners. A non-linear supply chain management model is developed with a controllable production rate to provide an economic benefit to the manufacturing firm in terms of the optimized total cost of production and to deal with the different situations under variable demand. The costs in the model are set as fuzzy to cope up with the uncertain conditions created by lasting pandemic. A numerical experiment is performed by utilizing the data set of the multi-stage manufacturing firm. The optimal results provide support for the industrial managers based on the proactive plan by the optimal utilization of the resources and controllable production rate to cope with the emergencies in a pandemic.


Author(s):  
Kosuke Ishii ◽  
Cheryl Juengel ◽  
C. Fritz Eubanks

Abstract This study develops a method to capture the broadest customer preference in a product line while minimizing the life-cycle cost of providing variety. The paper begins with an overview of product variety and its importance in overhead costs: supply chain, equipment and tooling, service, and recycling. After defining the product structure graph as a representation of variety, the paper introduces an approximate measure for the customer importance and life-cycle cost of product variety The cost measure utilizes the concept of late point identification which urges standardization early in the manufacturing process and differentiation at the end of the process. The variety importance-cost map allows engineers to identify cost drivers in the design of the product or the manufacturing system and seek improvements. The refrigerator door example illustrates the concept. On-going work seeks to validate and enhance the method with several companies from different industries.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Lang Xu ◽  
Jia Shi ◽  
Jihong Chen

This paper explores the decision-making and coordination mechanism of pricing and collection rate in a closed-loop supply chain with capacity constraint in recycling channels, which consists of one manufacturer and one retailer. On the basis of game theory, the equilibriums of decisions and profits in the centralized and decentralized scenarios are obtained and compared. Through the performance analysis of a different scenario, a higher saving production cost and lower competition intensity trigger the members to engage in remanufacturing. Furthermore, we try to propose a two-part tariff contract through bargaining to coordinate supply chain and achieve a Pareto improvement. The results show that when the capacity constraints in recycling channels exceed a threshold, the decisions and profit will change. Additionally, for closed-loop supply chain, the selling price is more susceptible to the influence of capacity constraint in recycling channel than the members’ profit.


Sign in / Sign up

Export Citation Format

Share Document