Design for Product Variety: Key to Product Line Structuring

Author(s):  
Kosuke Ishii ◽  
Cheryl Juengel ◽  
C. Fritz Eubanks

Abstract This study develops a method to capture the broadest customer preference in a product line while minimizing the life-cycle cost of providing variety. The paper begins with an overview of product variety and its importance in overhead costs: supply chain, equipment and tooling, service, and recycling. After defining the product structure graph as a representation of variety, the paper introduces an approximate measure for the customer importance and life-cycle cost of product variety The cost measure utilizes the concept of late point identification which urges standardization early in the manufacturing process and differentiation at the end of the process. The variety importance-cost map allows engineers to identify cost drivers in the design of the product or the manufacturing system and seek improvements. The refrigerator door example illustrates the concept. On-going work seeks to validate and enhance the method with several companies from different industries.

2021 ◽  
Vol 11 (4) ◽  
pp. 1423
Author(s):  
José Manuel Salmerón Lissen ◽  
Cristina Isabel Jareño Escudero ◽  
Francisco José Sánchez de la Flor ◽  
Miriam Navarro Escudero ◽  
Theoni Karlessi ◽  
...  

The 2030 climate and energy framework includes EU-wide targets and policy objectives for the period 2021–2030 of (1) at least 55% cuts in greenhouse gas emissions (from 1990 levels); (2) at least 32% share for renewable energy; and (3) at least 32.5% improvement in energy efficiency. In this context, the methodology of the cost-optimal level from the life-cycle cost approach has been applied to calculate the cost of renovating the existing building stock in Europe. The aim of this research is to analyze a pilot building using the cost-optimal methodology to determine the renovation measures that lead to the lowest life-cycle cost during the estimated economic life of the building. The case under study is an apartment building located in a mild Mediterranean climate (Castellon, SP). A package of 12 optimal solutions has been obtained to show the importance of the choice of the elements and systems for renovating building envelopes and how energy and economic aspects influence this choice. Simulations have shown that these packages of optimal solutions (different configurations for the building envelope, thermal bridges, airtightness and ventilation, and domestic hot water production systems) can provide savings in the primary energy consumption of up to 60%.


Author(s):  
Wai M. Cheung ◽  
Linda B. Newnes ◽  
Antony R. Mileham ◽  
Robert Marsh ◽  
John D. Lanham

This paper presents a review of research in the area of life cycle costing and offers a critique of current commercial cost estimation systems. The focus of the review is on relevant academic research on life cycle cost from 2000 onwards. In addition to this a comparison of the current cost estimation systems is presented. Using the review findings and industrial investigations as a base, a set of mathematical representations for design and manufacturing costs and the introduction of the critical factors is proposed. These are considered in terms of the operational, maintenance and disposal costs to create a method for ascertaining the life cycle cost estimate for complex products. This is presented using as an exemplar, research currently being undertaken in the area of low volume and long life electronic products in the UK defence sector. The benefit of the method proposed is that it aims to avoid the inflexibility of traditional approaches which usually require historical and legacy data to support the cost estimation processes.


2016 ◽  
Vol 4 (2) ◽  
pp. 149-155
Author(s):  
Allen Blash ◽  
William Butler ◽  
Lindy Clark ◽  
Kyle Fleming ◽  
LTC Jennifer Kasker

In order to make the best use of the defense spending budget, it is critical that the Department of Defense (DoD) accurately predict the Research, Development, Test and Evaluation (RDT&E), Procurement, and Operation and Support (O&S) costs down to the third level of the Work Breakdown Structure for Major Defense Acquisition Project (MDAP) wheeled or tracked vehicles. This research utilizes historical data, extracted from government databases, to develop cost estimating relationships (CERs) that predict the life cycle cost of wheeled and tracked vehicles based on attributes. This research can also be leveraged for defense acquisition programs across the DoD portfolio. The model will be integrated into a tradespace analysis tool, ERS & CREATE-GV, which was developed by ERDC to predict the cost of each alternative created in the tradespace.


2011 ◽  
Vol 2 (1) ◽  
pp. 1-11
Author(s):  
Lillian Gungat ◽  
Kurian V. John ◽  
Rohayah Ladom

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sung-Min Choi ◽  
Yeon-Sil Lee

Currently, repair and maintenance cycles that follow the completion of construction facilities lead to the necessitation of subsequent data on the analysis of study and plan for maintenance. As such, an index of evaluation was drafted and a plan of maintenance cycle was computed using the investigation data derived from surveying target housing units in permanent rental environmental conditions, with a minimum age of 20 years, and their maintenance history. Optimal maintenance and replacement methods were proposed based on this data. Economic analysis was conducted through the Risk-Weighted Life Cycle Cost (RWLCC) method in order to determine the cost analysis of maintenance life cycle methods used for repair. Current maintenance cycle methods that have been used for 20 years were also compared with alternative maintenance cycles.


Author(s):  
Varun J. Prabhakar ◽  
Peter Sandborn

Long life cycle products, commonly found in aviation, medical and critical infrastructure applications, are often fielded and supported for long periods of time (20 years or more). The manufacture and support of long life cycle products rely on the availability of suitable parts, which over long periods of time, leaves the parts susceptible to a number of possible supply chain disruptions such as suppliers exiting the market, counterfeit part risks, and part obsolescence. One solution to mitigating the supply chain risk is the strategic formulation of suitable part sourcing strategies (optimally selecting one or more suppliers from which to purchase parts over the life of the part’s use within a product or within an organization). Strategic sourcing offers one way of avoiding the risk of part unavailability (and its associated penalties), but at the possible expense of qualification and support costs for multiple suppliers. Existing methods used to study part sourcing decisions are procurement-centric where cost tradeoffs focus on part pricing, negotiation practices and purchase volumes. These studies are commonplace in strategic parts management for short life cycle products; however, conventional procurement-centric approaches offer only a limited view when assessing parts used in long life cycle products. Procurement-driven decision-making provides little to no insight into the accumulation of life cycle cost (attributed to the adoption and use of the part), which can be significantly larger than procurement costs in long life cycle products. This paper presents a new life cycle modeling approach to quantify risk that enables cost effective part sourcing strategies. The method quantifies obsolescence risk as “annual expected total cost of ownership (TCO) per part site” modeled by estimating the likelihood of obsolescence and using that likelihood to determine the TCO allowing sourcing strategies to be compared on a life cycle cost basis. The method is demonstrated for electronic parts in an example case study of linear regulators and shows that when procurement and inventory costs are small contributions to the part’s TCO, the cost of qualifying and supporting a second source outweighs the benefits of extending the part’s effective procurement life.


1978 ◽  
Vol 22 (1) ◽  
pp. 267-271
Author(s):  
F. Thomas Eggemeier ◽  
Gary A. Klein

Life cycle cost estimates of training equipment for F-16 Avionics Intermediate Station personnel were developed. The major purpose was to compare the cost of intermediate level maintenance training when conducted on simulated vs actual avionics test equipment. This was the initial phase of a planned two-part effort. The analysis was therefore limited to estimates of training device acquisition and maintenance costs. Total estimated fifteen year costs for simulated equipment trainers were approximately 50% less than comparable estimates for actual equipment trainers.


Author(s):  
Laxman Yadu Waghmode ◽  
Anil Dattatraya Sahasrabudhe

In order to survive in today’s competitive global business environment, implementation of life cycle costing methodology with a greater emphasis on cost control could be one of the convincing approaches for the manufacturing firms. The product life cycle costing approach can help track and analyse the cost implications associated with each phase of product life cycle. Life cycle costing (LCC) practices with traditional costing methods may provide results that have a severe deviation from the real product LCC as it focuses on the cost of materials, labor and a low portion of overheads apportioned by the absorption rate to the product. Activity based costing (ABC) has emerged as one of the several innovative and more accurate costing methods in recent years. It is based on the principle that products or services consume activities and activities consume resources that generate costs. Thus, the ABC system focuses on calculating the costs incurred on performing the activities to manufacture a product. This paper presents a LCC modeling approach for estimating life cycle cost of pumps using activity based costing method. The study was conducted in a large pump manufacturing company from India that has significant global standing within its industry. Firstly, all the activities and cost drivers associated with the life cycle of a pump have been identified. A methodology for LCC analysis using ABC is then developed and it is applied to two different pumps manufactured by the same industry and the results obtained are presented.


2019 ◽  
Vol 126 ◽  
pp. 5-14
Author(s):  
Anna Gobis ◽  
Kazimierz Jamroz ◽  
Łukasz Jeliński

The transport infrastructure management should be in line with sustainable development. Actions and activities that combine the environmental, social, and infrastructure expenditures optimally should be undertaken. The article presents a concept of life-cycle thinking that resolves these problems. The life cycle cost estimation method is a practical tool for managing transport infrastructure. The LCC analysis mustn’t generate more work than the benefits of it. Therefore appropriate assumptions should be made in constructing the method. The method assumes basic assumptions, taking into account the extensive scope of the research problem: transport infrastructure. The result of this article is a proposed mathematical model for estimating life-cycle costs. In the end, the practical use of the proposed methodology for determining the cost of the horizontal marking is provided.


Sign in / Sign up

Export Citation Format

Share Document