The Legendre wavelets operational matrix of integration

2001 ◽  
Vol 32 (4) ◽  
pp. 495-502 ◽  
Author(s):  
M. Razzaghi ◽  
S. Yousefi
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yunpeng Ma ◽  
Jun Huang ◽  
Mingxu Yi

This paper is devoted to introduce a novel method of the operational matrix of integration for Legendre wavelets in order to predict the thermal behavior of stratospheric balloons on float at high altitude in the stratosphere. Radiative and convective heat transfer models are also developed to calculate absorption and emission heat of the balloon film and lifting gas within the balloon. Thermal equilibrium equations (TEE) for the balloon system at daytime and nighttime are shown to predict the thermal behavior of stratospheric balloons. The properties of Legendre wavelets are used to reduce the TEE to a nonlinear system of algebraic equations which is solved by using a suitable numerical method. The approximations of the thermal behavior of the balloon film and lifting gas within the balloon are derived. The diurnal variations of the film and lifting gas temperature at float conditions are investigated, and the efficiency of the proposed method is also confirmed.


2012 ◽  
Vol 166-169 ◽  
pp. 2871-2875
Author(s):  
Yan Chang Wang ◽  
Ke Liang Ren ◽  
Yan Dong ◽  
Ming Guang Wu

To consider the deformation of thin rectangular plate under temperature. In this paper, the wavelet multi-scale method was used to solve the thin plate governing differential equations with four different initial or boundary conditions. An operational matrix of integration based on the wavelet was established and the procedure for applying the matrix to solve the differential equations was formulated, and got the deflection of thin rectangular plates under temperature. The result provides a theoretical reference for solving thin rectangular plate deflection in thermal environment using multi-scale approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
F. M. Alharbi ◽  
A. M. Zidan ◽  
Muhammad Naeem ◽  
Rasool Shah ◽  
Kamsing Nonlaopon

In this paper, we propose a novel and efficient numerical technique for solving linear and nonlinear fractional differential equations (FDEs) with the φ -Caputo fractional derivative. Our approach is based on a new operational matrix of integration, namely, the φ -Haar-wavelet operational matrix of fractional integration. In this paper, we derived an explicit formula for the φ -fractional integral of the Haar-wavelet by utilizing the φ -fractional integral operator. We also extended our method to nonlinear φ -FDEs. The nonlinear problems are first linearized by applying the technique of quasilinearization, and then, the proposed method is applied to get a numerical solution of the linearized problems. The current technique is an effective and simple mathematical tool for solving nonlinear φ -FDEs. In the context of error analysis, an exact upper bound of the error for the suggested technique is given, which shows convergence of the proposed method. Finally, some numerical examples that demonstrate the efficiency of our technique are discussed.


2020 ◽  
pp. 107754632093202
Author(s):  
Haniye Dehestani ◽  
Yadollah Ordokhani ◽  
Mohsen Razzaghi

In this article, a newly modified Bessel wavelet method for solving fractional variational problems is considered. The modified operational matrix of integration based on Bessel wavelet functions is proposed for solving the problems. In the process of computing this matrix, we have tried to provide a high-accuracy operational matrix. We also introduce the pseudo-operational matrix of derivative and the dual operational matrix with the coefficient. Also, we investigate the error analysis of the computational method. In the examples section, the behavior of the approximate solutions with respect to various parameters involved in the construction method is tested to illustrate the efficiency and accuracy of the proposed method.


2018 ◽  
Vol 13 (8) ◽  
Author(s):  
F. Mohammadi ◽  
J. A. Tenreiro Machado

This paper compares the performance of Legendre wavelets (LWs) with integer and noninteger orders for solving fractional nonlinear Fredholm integro-differential equations (FNFIDEs). The generalized fractional-order Legendre wavelets (FLWs) are formulated and the operational matrix of fractional derivative in the Caputo sense is obtained. Based on the FLWs, the operational matrix and the Tau method an efficient algorithm is developed for FNFIDEs. The FLWs basis leads to more efficient and accurate solutions of the FNFIDE than the integer-order Legendre wavelets. Numerical examples confirm the superior accuracy of the proposed method.


Author(s):  
M. H. Heydari

The time fractional subdiffusion equation (FSDE) as a class of anomalous diffusive systems has obtained by replacing the time derivative in ordinary diffusion by a fractional derivative of order 0<α<1. Since analytically solving this problem is often impossible, proposing numerical methods for its solution has practical importance. In this paper, an efficient and accurate Galerkin method based on the Legendre wavelets (LWs) is proposed for solving this equation. The time fractional derivatives are described in the Riemann–Liouville sense. To do this, we first transform the original subdiffusion problem into an equivalent problem with fractional derivatives in the Caputo sense. The LWs and their fractional operational matrix (FOM) of integration together with the Galerkin method are used to transform the problem under consideration into the corresponding linear system of algebraic equations, which can be simply solved to achieve the solution of the problem. The proposed method is very convenient for solving such problems, since the initial and boundary conditions are taken into account, automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.


Sign in / Sign up

Export Citation Format

Share Document