Fixed-order controller design for linear time-invariant descriptor systems: A BMI approach

2005 ◽  
Vol 36 (1) ◽  
pp. 13-18 ◽  
Author(s):  
X. Huang ◽  
B. Huang *
2003 ◽  
Vol 125 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Guang-Hong Yang ◽  
Jian Liang Wang

This paper is concerned with the nonfragile H∞ controller design problem for linear time-invariant systems. The controller to be designed is assumed to have norm-bounded uncertainties. Design methods are presented for dynamic output (measurement) feedback. The designed controllers with uncertainty (i.e. nonfragile controllers) are such that the closed-loop system is quadratically stable and has an H∞ disturbance attenuation bound. Furthermore, these robust controllers degenerate to the standard H∞ output feedback control designs, when the controller uncertainties are set to zero.


2016 ◽  
Vol 67 (3) ◽  
pp. 160-168 ◽  
Author(s):  
Stepan Ozana ◽  
Tomas Docekal

Abstract This paper deals with design of PID controller with the use of methods of global optimization implemented in Matlab environment and Optimization Toolbox. It is based on minimization of a chosen integral criterion with respect to additional requirements on control quality such as overshoot, phase margin and limits for manipulated value. The objective function also respects user-defined weigh coefficients for its particular terms for a different penalization of individual requirements that often clash each other such as for example overshoot and phase margin. The described solution is designated for continuous linear time-invariant static systems up to 4th order and thus efficient for the most of real control processes in practice.


2016 ◽  
Vol 39 (3) ◽  
pp. 297-311 ◽  
Author(s):  
HE Erol ◽  
A İftar

The stabilizing decentralized controller design problem for (possibly descriptor-type) linear time-invariant neutral time-delay systems is considered. A design approach, based on the continuous pole placement algorithm and the decentralized pole assignment algorithm, is proposed. A design example is also presented, to demonstrate the proposed approach.


2021 ◽  
Vol 20 ◽  
pp. 289-294
Author(s):  
Altug Iftar

Linear time-invariant descriptor-type time-delay systems are considered. A robust stabilizing controller design approach for such systems is introduced. Uncertainties both in the time-delays and in other system parameters are considered. A frequency-dependent scalar bound on such uncertainties is first derived. Once this bound is found, the controller design is completely based on the nominal model. However, satisfying a scalar frequency-dependent condition, which uses the derived bound, guarantees robust stability. An example is also presented to illustrate the proposed approach


Author(s):  
Rudolf Sebastian Schittenhelm ◽  
Bernd Riemann ◽  
Stephan Rinderknecht

H∞-optimal controllers are designed for a rotor being subject to unbalance excitation and gyroscopic effect. The system possesses two unbalance-induced resonances within its operating range. The presence of gyroscopic effect is challenging for linear time invariant controller design because of the associated dependence of the system dynamics on the rotational frequency of the rotor. Controllers thus have to be robust against deviation of the actual system behavior from the controller design point model. For vibration control purposes, there are two piezoelectric actuators installed in one of the two supports of the rotor. The signals of four inductive sensors measuring the displacements of the two discs of the rotor are used for controller design. In this article, H∞-optimal controllers are designed on the basis of input and output weighting as well as weighting of modal degrees of freedom and modal excitations. It is shown that superior control performance is achieved using modal weighting since a more accurate problem description of rotors excited by unbalance is incorporated in controller design. Results in this article show furthermore that it is possible to design well performing H∞-optimal controllers for a gyroscopic rotor by means of iterative controller design without taking model uncertainty directly into account via weighting of certain FRFs of the system to be controlled.


Sign in / Sign up

Export Citation Format

Share Document