Robust H∞ filtering for finite-time boundedness of Markovian jump system with distributed time-varying delays

2020 ◽  
Vol 51 (2) ◽  
pp. 368-380
Author(s):  
S. Saravanan ◽  
M. Syed Ali ◽  
Hamed Alsulami ◽  
Mohammed Sh. Alhodaly
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Yan ◽  
Xiaojia Zhou ◽  
Jun Cheng ◽  
Fangnian Lang

The issue of finite-timeH∞filtering for singular stochastic Markovian jump systems with time-varying delays is concerned in this paper.H∞filtering is designed for underlying closed-loop singular Markovian jump system and system state does not exceed a given bound over some finite-time interval. Considering the full information of underlying Markov process, sufficient conditions are obtained to guarantee that the described system is finite-time stability andH∞filtering finite-time boundedness. By establishing the results of stochastic character and finite-time boundedness, the closed-loop singular Markovian jump system trajectory stays within the given bound. At last, a numerical example is supplied to show the efficiency of the proposed method.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


Sign in / Sign up

Export Citation Format

Share Document