A novel robust finite-time tracking control of uncertain robotic manipulators with disturbances

2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.

Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Guo ◽  
Shen-Min Song ◽  
Xue-Hui Li

Two finite-time controllers without unwinding for the attitude tracking control of the spacecraft are investigated based on the rotation matrix, in which a novel modified nonsingular fast terminal sliding manifold is developed to keep tr(R~)≠-1. The first terminal sliding mode controller can compensate external disturbances with known bounds, while the second one can compensate external disturbances with unknown bounds by using an adaptive control method. Since the first terminal sliding mode controller is continuous, it is able to avoid chattering phenomenon. Theoretical analysis shows that both the two controllers can make spacecraft follow a time-varying reference attitude signal in finite time. Numerical simulations also demonstrate that the proposed control schemes are effective.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092529
Author(s):  
Lei Wan ◽  
Guofang Chen ◽  
Mingwei Sheng ◽  
Yinghao Zhang ◽  
Ziyang Zhang

This study investigates an adaptive chattering-free sliding-mode control method for n-order nonlinear systems with unknown external disturbances and uncertain models. The proposed method takes the advantage of finite-time fast convergence to avoid singularity problem and ensure its robustness against system uncertainty and unknown disturbance. To achieve fast convergence from any initial condition to system origin, a full-order terminal sliding-mode controller containing differential terms is proposed based on the property of n-order nonlinear systems. Then the continuous and smooth actual control law is obtained by integrating the differential control law containing the discontinuous sign function to realize chattering free. Meanwhile, instead of evaluating the fixed upper bound of system uncertainty and interference in practical implementations, an adaptive method is utilized for its unknown upper bound estimation. The convergence of the adaptive terminal sliding-mode controller in finite time is verified based on Lyapunov stability theory. Finally, two simulation results demonstrate the effectiveness of the proposed control method.


Automatica ◽  
2005 ◽  
Vol 41 (11) ◽  
pp. 1957-1964 ◽  
Author(s):  
Shuanghe Yu ◽  
Xinghuo Yu ◽  
Bijan Shirinzadeh ◽  
Zhihong Man

Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


2020 ◽  
pp. 107754632092526
Author(s):  
Amir Razzaghian ◽  
Reihaneh Kardehi Moghaddam ◽  
Naser Pariz

This study investigates a novel fractional-order nonsingular terminal sliding mode controller via a finite-time disturbance observer for a class of mismatched uncertain nonlinear systems. For this purpose, a finite-time disturbance observer–based fractional-order nonsingular terminal sliding surface is proposed, and the corresponding control law is designed using the Lyapunov stability theory to satisfy the sliding condition in finite time. The proposed fractional-order nonsingular terminal sliding mode control based on a finite-time disturbance observer exhibits better control performance; guarantees finite-time convergence, robust stability of the closed-loop system, and mismatched disturbance rejection; and alleviates the chattering problem. Finally, the effectiveness of the proposed fractional-order robust controller is illustrated via simulation results of both the numerical and application examples which are compared with the fractional-order nonsingular terminal sliding mode controller, sliding mode controller based on a disturbance observer, and integral sliding mode controller methods.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1425-1434 ◽  
Author(s):  
Sunhua Huang ◽  
Jie Wang

In this study, a fractional-order sliding mode controller is effectively proposed to stabilize a nonlinear power system in a fixed time. State trajectories of a nonlinear power system show nonlinear behaviors on the angle and frequency of the generator, phase angle, and magnitude of the load voltage, which would seriously affect the safe and stable operation of the power grid. Therefore, fractional calculus is applied to design a fractional-order sliding mode controller which can effectively suppress the inherent chattering phenomenon in sliding mode control to make the nonlinear power system converge to the equilibrium point in a fixed time based on the fixed-time stability theory. Compared with the finite-time control method, the convergence time of the proposed fixed-time fractional-order sliding mode controller is not dependent on the initial conditions and can be exactly evaluated, thus overcoming the shortcomings of the finite-time control method. Finally, superior performances of the fractional-order sliding mode controller are effectively verified by comparing with the existing finite-time control methods and integral order sliding mode control through numerical simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yassine El Houm ◽  
Ahmed Abbou ◽  
Moussa Labbadi ◽  
Mohamed Cherkaoui

This paper deals with the design of a novel modified supertwisting fast nonlinear sliding mode controller (MSTFNSMC) to stabilize a quadrotor system under time-varying disturbances. The suggested control strategy is based on a modified supertwisting controller with a fast nonlinear sliding surface to improve the tracking performance. The paper suggests a simple optimization tool built-in MATLAB/Simulink to tune the proposed controller parameters. Fast convergence of state variables is established by using a nonlinear sliding surface for rotational and translational subsystems. The modified supertwisting controller is developed to suppress the effect of chattering, reject disturbances, and ensure robustness against external disturbance effect. The stability of the proposed controller (MSTFNSMC) is proved using the Lyapunov theory. The performance of the proposed MSTFNSMC approach is compared with the supertwisting sliding mode controller (STSMC) by numerical simulations to verify its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document