No effect of abscisic and p-coumaric acids as food supplements and stimulants of the immunological system of Africanized hybrids of Apis mellifera

Author(s):  
Elissa Chávez-Hernández ◽  
Gabriel Otero-Colina ◽  
Celina Llanderal-Cázares ◽  
Matías Maggi-Daniel ◽  
Sóstenes Rafael Rodríguez-Dehaibes ◽  
...  
Author(s):  
Maria Anna Pabst

In addition to the compound eyes, honeybees have three dorsal ocelli on the vertex of the head. Each ocellus has about 800 elongated photoreceptor cells. They are paired and the distal segment of each pair bears densely packed microvilli forming together a platelike fused rhabdom. Beneath a common cuticular lens a single layer of corneagenous cells is present.Ultrastructural studies were made of the retina of praepupae, different pupal stages and adult worker bees by thin sections and freeze-etch preparations. In praepupae the ocellar anlage consists of a conical group of epidermal cells that differentiate to photoreceptor cells, glial cells and corneagenous cells. Some photoreceptor cells are already paired and show disarrayed microvilli with circularly ordered filaments inside. In ocelli of 2-day-old pupae, when a retinogenous and a lentinogenous cell layer can be clearly distinguished, cell membranes of the distal part of two photoreceptor cells begin to interdigitate with each other and so start to form the definitive microvilli. At the beginning the microvilli often occupy the whole width of the developing rhabdom (Fig. 1).


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
S Czigle ◽  
N Jedlinszki ◽  
E Háznagy-Radnai ◽  
D Csupor ◽  
J Tóth

2016 ◽  
Vol 51 (2) ◽  
pp. 156-171
Author(s):  
А.В. СПРЫГИН ◽  
◽  
Ю.Ю. БАБИН ◽  
Е.М. ХАНБЕКОВА ◽  
Л.Е. РУБЦОВА ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document