scholarly journals EFFECT OF EPOXIDIZED NATURAL RUBBER AS A COMPATIBILIZER IN SILICA-FILLED STYRENE BUTADIENE RUBBER COMPOUND

2014 ◽  
Vol 3 (2) ◽  
pp. 1-4
Author(s):  
Indra Surya ◽  
Siswarni MZ

By using a semi-efficient vulcanization system, the effect of Epoxidized Natural Rubber (ENR) as a compatibilizer in silica-filled Styrene Butadiene Rubber (SBR) compound was carried out. The ENR was incorporated into the silica-filled SBR compound at 5.0 and 10.0 phr. An investigation was carried out to examine the effect of ENR on cure characteristics and tensile properties of the silica-filled SBR compound. It was found that ENR gave enhanced cure rate to the silica-filled SBR compound. ENR also exhibited a higher torque difference, tensile modulus, and tensile strength up to 10.0 phr. The study of rubber - filler interaction proved that the addition of ENR to the silica-filled SBR system improved the rubber - filler interaction.

1999 ◽  
Vol 72 (4) ◽  
pp. 721-730 ◽  
Author(s):  
G. R. Hamed ◽  
J. Zhao

Abstract Typical sulfur-cured vulcanizates of styrene-butadiene rubber (SBR) and natural rubber (NR) were prepared, and subjected to air-oven aging at 100 °C. Gum specimens exhibited an initial aging period in which stiffness was unchanged, while tensile strength and strain-to-break were significantly reduced. In contrast, black-filled vulcanizates stiffened during early aging. After intermediate aging times, NR specimens softened, while SBR stiffened. With prolonged aging, all compositions became hard and inextensible.


2018 ◽  
Vol 197 ◽  
pp. 12006 ◽  
Author(s):  
Indra Surya ◽  
Hanafi Ismail

By using a semi-efficient sulphur vulcanisation system, the effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and tensile properties of carbon black (CB)-filled styrene-butadiene rubber (SBR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and added into the CB-filled SBR compounds. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK decreased the scorch and cure times of the CB-filled SBR compounds. ALK also improved the tensile modulus and tensile strength; especially up to a 5.0 phr of loading. The crosslink density measurement proved that the 5.0 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength. Due to its plasticity effect, ALK increased the elongation at break of the CB-filled SBR vulcanisates.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
R. Rajasekar ◽  
Gert Heinrich ◽  
Amit Das ◽  
Chapal Kumar Das

The significant factor that determines the improvement of properties in rubber by the incorporation of nanoclay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nanoclay will not contribute for the good dispersion of nanofiller in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nanoclay in the matrix polymer. Epoxidized natural rubber and organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay employed in this study is Cloisite 20A. The obtained nanocomposites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nanoclay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nanoclay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.


2018 ◽  
Vol 40 (S2) ◽  
pp. E1559-E1572 ◽  
Author(s):  
Dipankar Mondal ◽  
Soumyajit Ghorai ◽  
Dipak Rana ◽  
Debapriya De ◽  
Dipankar Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document