rubber filler
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
pp. 009524432110635
Author(s):  
Gopika Sudhakaran ◽  
Shanti A Avirah

Maleic anhydride was chemically attached to depolymerized natural rubber, and the product was named as carboxy-terminated liquid natural rubber (CTNR). The CTNR can act as a potential plasticizer in chloroprene (CR) vulcanizates. This paper describes the use of commercial nano silica (NS) as a promising cost-effective filler, which can enhance the tensile properties and ageing resistance of the CR vulcanizates incorporated with CTNR (CR-CTNR). The enhancement in properties may be attributed to the increased bound-rubber content owing to the large surface area of the nano-sized filler. The characteristics of the NS-filled CR vulcanizates containing CTNR (NS CR-CTNR) were compared with those containing amorphous silica. The NS CR-CTNR vulcanizates showed superior ageing and oil resistance due to the finer rubber filler interaction modified by ionic cross linking.


2021 ◽  
pp. 51982
Author(s):  
Shicheng Yang ◽  
Jinlong Tan ◽  
Xiaoxiao Xue ◽  
Yulong Zhang ◽  
Qi Sun

2021 ◽  
Vol 14 (4) ◽  
pp. 464-476
Author(s):  
Bekhzod B. Yoqubov ◽  
◽  
Akhmadjon Ibadullaev ◽  
Dilnora Q. Yoqubova ◽  
Elmira U. Teshabaeva ◽  
...  

The aim of this work is to study the effect of new modified ingredients on the complex of properties of composite elastomeric materials. It was found that the introduction of modified ingredients into the composition of elastomeric compositions enhances interfacial interaction at the «rubber-filler» interface and the formation of additional bonds between rubber macromolecules and functional groups, as a result of which an improvement in the complex of properties of the compositions is observed. The introduction of modified carbon into the composition of elastomeric compositions enhances interfacial interaction at the «rubber-filler» interface and the formation of additional bonds between rubber macromolecules and functional groups of the oligomer, as a result of which an improvement in the complex of properties of the compositions is observed. The technology of purification of mineral fillers from metal oxides has been developed. A sufficiently high degree of purification by this method is due to the fact that in the process of temperature exposure at 950 K, iron ions from the paramagnetic state (d-form Fe2O3) pass into ferromagnetic (r-form Fe3O4). Feasibility and prospects of using modified fillers, both mineral and organic, in the formulations of rubber compounds for the production of various types of rubber products


Author(s):  
Akaporn Limtrakul ◽  
Pongdhorn Sae-Oui ◽  
Manuchet Nillawong ◽  
Chakrit Sirisinha

Influence of carbon black (CB)/precipitated silica (SiO2) hybrid ratio on properties of a passenger car tire (PCT) sidewall based on natural rubber (NR) and butadiene rubber (BR) blend was investigated. Rubbers filled with various hybrid filler ratios at a constant loading of 50 phr were prepared and tested. The filler reinforcement efficiency in association with crucial properties of the tire sidewall were of interest. Results show the enhanced rubber–filler interaction with increasing SiO2 fraction leading to the improvement in many vulcanizate properties including hardness, tensile strength, tear strength and fatigue resistance, at the expense of cure efficiency and hysteretic behaviors (i.e., reduced heat build-up resistance and increased dynamic set). The results also suggest the improvement in tire sidewall performance of the NR/BR vulcanizates reinforced with CB/SiO2 hybrid filler, compared to that of the CB-filled vulcanizate.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2534
Author(s):  
Sriharish Malebennur Nagaraja ◽  
Sven Henning ◽  
Sybill Ilisch ◽  
Mario Beiner

A comparative study focusing on the visco–elastic properties of two series of carbon black filled composites with natural rubber (NR) and its blends with butadiene rubber (NR-BR) as matrices is reported. Strain sweeps at different temperatures are performed. Filler network-related contributions to reinforcement (ΔG′) are quantified by the classical Kraus equation while a modified Kraus equation is used to quantify different contributions to dissipation (ΔGD″, ΔGF″). Results indicate that the filler network is visco-elastic in nature and that it is causing a major part of the composite dissipation at small and intermediate strain amplitudes. The temperature dependence of filler network-related reinforcement and dissipation contributions is found to depend significantly on the rubber matrix composition. We propose that this is due to differences in the chemical composition of the glassy rubber bridges connecting filler particles since the filler network topology is seemingly not significantly influenced by the rubber matrix for a given filler content. The underlying physical picture explains effects in both dissipation and reinforcement. It predicts that these glassy rubber bridges will soften sequentially at temperatures much higher than the bulk Tg of the corresponding rubber. This is hypothetically due to rubber–filler interactions at interfaces resulting in an increased packing density in the glassy rubber related to the reduction of free volume. From a general perspective, this study provides deeper insights towards the molecular origin of reinforcement and dissipation in rubber composites.


2021 ◽  
pp. 32-44

The results of a study present the effect of new modified ingredients on the complex of properties of composite elastomeric materials. Methods for modifying mineral fillers have developed. It found that the introduction of modified ingredients into the composition of elastomeric compositions enhances the interfacial interaction at the “rubber-filler” interface and the formation of additional bonds between rubber macromolecules and functional groups, resulting in an improvement in the complex of properties of the compositions. New accelerators, activators for vulcanization of rubbers and plasticizers with stabilizing properties have proposed, and their optimal contents in the composition have determined.


2021 ◽  
Vol 13 (9) ◽  
pp. 5251
Author(s):  
Murat Ayar ◽  
Alper Dalkiran ◽  
Utku Kale ◽  
András Nagy ◽  
Tahir Hikmet Karakoc

Rubber is one of the rare materials that can be used in many sectors and for multiple purposes. It can be used in a wide range of frameworks, from very simple coating materials to very complex spacecraft parts. Apart from natural rubber, compounds are also used for different purposes in rubber production. For a product with such a wide range of uses, the sustainability of its compounds is particularly important. The objective of this study is to investigate environmentally friendly and sustainable alternatives for rubber and some compounds, such as fillers and softeners. By doing this research with an academic method, the most suitable option is determined by taking the weights of the factors affecting this decision into consideration. As a result, the most suitable rubber, filler, and softener options are presented.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.


2020 ◽  
Vol 20 (4) ◽  
pp. 93-98
Author(s):  
М. А. Shilov ◽  
S. V. Fomin ◽  
A. A. Britova ◽  
P. V. Korolev

The work presents investigation results of physical and mechanical properties of rubber mixtures based on SKI-3 and SKS-30-ARKM-15 rubbers reinforced with hybrid filler carbon black/carbon nanotubes (CB/CNT). Elasticity, hardness and strength were measured according to standard procedures presented in GOST. The content of the carbon nanotubes in rubber mixtures was 0,5 wt. %. parts per 100 wt. parts of rubber. According to experiments, it was found that the introduction of CB/CNT masterbatches into the structure of both investigated rubbers reduces their elasticity and increases Shore A hardness. During uniaxial tension of the tested rubbers, it was found that the presence of the nanostructured CB/CNT filler in the rubber structure leads to an increase in the nominal strength for SKI-3-based rubber by 19,6 %, and on SKS-30-ARKM-15 by 22,5 %. Therefore, the use of CB/CNT nanostructures as a rubber filler is a promising method of improving rubber performance characteristics.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2745
Author(s):  
Thridsawan Prasopdee ◽  
Wirasak Smitthipong

Natural rubber foam (NRF) can be prepared from concentrated natural latex, providing specific characteristics such as density, compression strength, compression set, and so on, suitable for making shape-memory products. However, many customers require NRF products with a low compression set. This study aims to develop and prepare NRF to investigate its recoverability and other related characteristics by the addition of charcoal and silica fillers. The results showed that increasing filler loading increases physical and mechanical properties. The recoverability of NRF improves as silica increases, contrary to charcoal loading, due to the higher specific surface area of silica. Thermodynamic aspects showed that increasing filler loading increases the compression force (F) as well as the proportion of internal energy to the compression force (Fu/F). The entropy (S) also increases with increasing filler loading, which is favorable for thermodynamic systems. The activation enthalpy (∆Ha) of the NRF with silica is higher than the control NRF, which is due to rubber–filler interactions created within the NRF. A thermodynamic concept of crosslinked rubber foam with filler is proposed. From theory to application, in this study, the NRF has better recoverability with silica loading.


Sign in / Sign up

Export Citation Format

Share Document