Uncertainty Quantification of the 1-D SFR Thermal Stratification Model via the Latin Hypercube Sampling Monte Carlo Method

2021 ◽  
pp. 1-12
Author(s):  
Cihang Lu ◽  
Zeyun Wu
2005 ◽  
Vol 62 (11) ◽  
pp. 4010-4026 ◽  
Author(s):  
Vincent E. Larson ◽  
Jean-Christophe Golaz ◽  
Hongli Jiang ◽  
William R. Cotton

Abstract One problem in computing cloud microphysical processes in coarse-resolution numerical models is that many microphysical processes are nonlinear and small in scale. Consequently, there are inaccuracies if microphysics parameterizations are forced with grid box averages of model fields, such as liquid water content. Rather, the model needs to determine information about subgrid variability and input it into the microphysics parameterization. One possible solution is to assume the shape of the family of probability density functions (PDFs) associated with a grid box and sample it using the Monte Carlo method. In this method, the microphysics subroutine is called repeatedly, once with each sample point. In this way, the Monte Carlo method acts as an interface between the host model’s dynamics and the microphysical parameterization. This avoids the need to rewrite the microphysics subroutines. A difficulty with the Monte Carlo method is that it introduces into the simulation statistical noise or variance, associated with the finite sample size. If the family of PDFs is tractable, one can sample solely from cloud, thereby improving estimates of in-cloud processes. If one wishes to mitigate the noise further, one needs a method for reduction of variance. One such method is Latin hypercube sampling, which reduces noise by spreading out the sample points in a quasi-random fashion. This paper formulates a sampling interface based on the Latin hypercube method. The associated family of PDFs is assumed to be a joint normal/lognormal (i.e., Gaussian/lognormal) mixture. This method of variance reduction has a couple of advantages. First, the method is general: the same interface can be used with a wide variety of microphysical parameterizations for various processes. Second, the method is flexible: one can arbitrarily specify the number of hydrometeor categories and the number of calls to the microphysics parameterization per grid box per time step. This paper performs a preliminary test of Latin hypercube sampling. As a prototypical microphysical formula, this paper uses the Kessler autoconversion formula. The PDFs that are sampled are extracted diagnostically from large-eddy simulations (LES). Both stratocumulus and cumulus boundary layer cases are tested. In this diagnostic test, the Latin hypercube can produce somewhat less noisy time-averaged estimates of Kessler autoconversion than a traditional Monte Carlo estimate, with no additional calls to the microphysics parameterization. However, the instantaneous estimates are no less noisy. This paper leaves unanswered the question of whether the Latin hypercube method will work well in a prognostic, interactive cloud model, but this question will be addressed in a future manuscript.


2011 ◽  
Vol 71-78 ◽  
pp. 1360-1365
Author(s):  
Jian Quan Ma ◽  
Guang Jie Li ◽  
Shi Bo Li ◽  
Pei Hua Xu

Take a typical cross-section of rockfill embankment slope in Yaan-Luku highway as the research object, reliability analysis is studied under the condition of water table of 840.85m, 851.50m, and loading condition of natural state and horizontal seismic acceleration of 0.2g, respectively. Raw data use Kolmogorov-Smirnov test (K-S test) to determine the distribution type of parametric variation. And the parameters were sampling with Latin hypercube sampling (LHS) method and Monte Carlo (MC) method, respectively, to obtain state function and determine safety factors and reliability indexes. A conclusion is drawn that the times of simulation based on LHS method were less than Monte Carlo method. Also the convergence of failure probability is better than the Monte Carlo method. The safety factor is greater than one and the failure probability has reached to 35.45% in condition of earthquake, which indicating that the instability of rockfill embankment slope is still possible.


2014 ◽  
Vol 46 (4) ◽  
pp. 481-488 ◽  
Author(s):  
SEUNG WOOK LEE ◽  
BUB DONG CHUNG ◽  
YOUNG-SEOK BANG ◽  
SUNG WON BAE

Author(s):  
Matthew C. Dunn ◽  
Babak Shotorban ◽  
Abdelkader Frendi

This paper is concerned with the propagation of uncertainties in the values of turbulence model coefficients and parameters in turbulent flows. These coefficients and parameters are determined from experiments performed on elementary flows and they are subject to uncertainty. The widely used k–ε turbulence model is considered. It consists of model transport equations for the turbulence kinetic energy and rate of turbulent dissipation. Both equations involve various model coefficients about which adequate knowledge is assumed known in the form of probability density functions. The study is carried out for the flow over a 2D backward-facing step configuration. The Latin Hypercube Sampling method is employed for the uncertainty quantification purposes as it requires a smaller number of samples compared to the conventional Monte-Carlo method. The mean values are reported for the flow output parameters of interest along with their associated uncertainties. The results show that model coefficient variability has significant effects on the streamwise velocity component in the recirculation region near the reattachment point and turbulence intensity along the free shear layer. The reattachment point location, pressure, and wall shear are also significantly affected.


2014 ◽  
Vol 185 (5) ◽  
pp. 1355-1363 ◽  
Author(s):  
Americo Cunha ◽  
Rafael Nasser ◽  
Rubens Sampaio ◽  
Hélio Lopes ◽  
Karin Breitman

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Matthew C. Dunn ◽  
Babak Shotorban ◽  
Abdelkader Frendi

The article is concerned with the propagation of uncertainties in the values of turbulence model coefficients and parameters in turbulent flows. These coefficients and parameters are obtained through experiments performed on elementary flows, and they are subject to uncertainty. In this work, the widely used k-ɛ turbulence model is considered. It consists of model transport equations for the turbulence kinetic energy and the rate of turbulent dissipation. Both equations involve various model coefficients about which adequate knowledge is assumed known in the form of probability density functions. The study is carried out for a flow over a 2D backward-facing step configuration. The Latin Hypercube Sampling method is employed for the uncertainty quantification purposes as it requires a smaller number of samples compared to the conventional Monte Carlo method. The mean values are reported for the flow output parameters of interest along with their associated uncertainties. The results show that model coefficient variability has significant effects on the streamwise mean velocity in the recirculation region near the reattachment point and turbulence intensity along the free shear layer. The reattachment point location, pressure, and wall shear are also significantly influenced by the uncertainties of the coefficients.


Sign in / Sign up

Export Citation Format

Share Document