Numerical Investigation of Dryout Heat Flux and Heat Transfer Characteristics in Core Debris Bed of SFR After Severe Accident

2018 ◽  
Vol 193 (1-2) ◽  
pp. 115-130
Author(s):  
Bin Zhang ◽  
Mengwei Zhang ◽  
Cheng Peng ◽  
Jianqiang Shan ◽  
Baowen Yang ◽  
...  
Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


2014 ◽  
Vol 591 ◽  
pp. 3-6
Author(s):  
M. Raja ◽  
R. Vijayan ◽  
R. Vivekananthan ◽  
M.A. Vadivelu

In the present work, the effect of nanofluid in a shell and tube heat exchanger was studied numerically. The effects of Reynolds number, volume concentration of suspended nanoparticles on the heat transfer characteristics were investigated using CFD software. Finally, the effect of the nanofluid on Shell and tube heat exchanger performance was studied and compared to that of a conventional fluid (i.e., water).


Sign in / Sign up

Export Citation Format

Share Document